2,073 research outputs found

    Transillumination imaging through scattering media by use of photorefractive polymers

    Get PDF
    We demonstrate the use of a near-infrared-sensitive photorefractive polymer with high efficiency for imaging through scattering media, using an all-optical holographic time gate. Imaging through nine scattering mean free paths is performed at 800 nm with a mode-locked continuous-wave Ti:sapphire laser

    Dynamical stability of the crack front line

    Full text link
    Dynamical stability of the crack front line that propagates between two plates is studied numerically using the simple two-dimensional mass-spring model. It is demonstrated that the straight front line is unstable for low speed while it becomes stable for high speed. For the uniform model, the roughness exponent in the slower speed region is fairly constant around 0.4 and there seems to be a rough-smooth transition at a certain speed. For the inhomogeneous case with quenched randomness, the transition is gradual.Comment: 14 pages, 7 figure

    Operation Menace

    Get PDF

    Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths

    Get PDF
    We report on amorphous organic thin films that exhibit efficient third-harmonic generation at telecommunication wavelengths. At 1550 nm, micrometer-thick samples generate up to 17 µW of green light with input power of 250 mW delivered by an optical parametric oscillator. This high conversion efficiency is achieved without phase matching or cascading of quadratic nonlinear effects. With these films, we demonstrate a low-cost, sensitive third-order autocorrelator that can be used in the time-frequency domain

    Necessary and sufficient condition for longitudinal magnetoresistance

    Full text link
    Since the Lorentz force is perpendicular to the magnetic field, it should not affect the motion of a charge along the field. This argument seems to imply absence of longitudinal magnetoresistance (LMR) which is, however, observed in many materials and reproduced by standard semiclassical transport theory applied to particular metals. We derive a necessary and sufficient condition on the shape of the Fermi surface for non-zero LMR. Although an anisotropic spectrum is a pre-requisite for LMR, not all types of anisotropy can give rise to the effect: a spectrum should not be separable in any sense. More precisely, the combination kρvϕ/vρk_{\rho}v_{\phi}/v_{\rho}, where kρk_\rho is the radial component of the momentum in a cylindrical system with the z-axis along the magnetic field and vρ(vϕv_{\rho} (v_{\phi}) is the radial (tangential) component of the velocity, should depend on the momentum along the field. For some lattice types, this condition is satisfied already at the level of nearest-neighbor hopping; for others, the required non-separabality occurs only if next-to-nearest-neighbor hopping is taken into account.Comment: 7 pages, 2 figure

    Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films

    Get PDF
    We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer

    Magnetic Strings in Dilaton Gravity

    Full text link
    First, I present two new classes of magnetic rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with Liouville-type potential. The first class of solutions yields a 4-dimensional spacetime with a longitudinal magnetic field generated by a static or spinning magnetic string. I find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when the rotation parameter does not vanish, there exists an electric field, and therefore the spinning string has a net electric charge which is proportional to the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. The net electric charge of the strings in these spacetimes is proportional to their velocities. Second, I obtain the (n+1n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. I argue that these solutions can present horizonless spacetimes with conic singularity, if one chooses the parameters of the solutions suitable. I also use the counterterm method and compute the conserved quantities of these spacetimes.Comment: 16 pages, no figure, references added, some minor correction

    Nonlinear optical properties of push–pull polyenes for electro-optics

    Get PDF
    Improved nonlinear organic chromophores of varying conjugation length with either thiobarbituric acid or 3-dicyanomethylene-2,3-dihydrobenzothiophene-1,1-dioxide (FORON® Blue) acceptors have been synthesized and investigated for their nonlinear optical properties. Very large quadratic hyperpolarizabilities β(−2ω; ω, ω) have been found, up to 25,700×10^(−48) esu at λ=1.91 μm. In a guest–host polymer very high electro-optic (EO) coefficients, of up to 55 pm/V, have been determined at λ=1.31 μm with 20-wt % chromophore loading. We find good agreement between molecular parameters evaluated by electric-field-induced second-harmonic generation (EFISH) and the measurements of guest–host solid–solid solutions. The latter method is well suited to the determination of the product of dipole moment μ and hyperpolarizability β quickly and reliably at the wavelength of interest for EO applications without the complications associated with EFISH measurements

    Cracks Cleave Crystals

    Full text link
    The problem of finding what direction cracks should move is not completely solved. A commonly accepted way to predict crack directions is by computing the density of elastic potential energy stored well away from the crack tip, and finding a direction of crack motion to maximize the consumption of this energy. I provide here a specific case where this rule fails. The example is of a crack in a crystal. It fractures along a crystal plane, rather than in the direction normally predicted to release the most energy. Thus, a correct equation of motion for brittle cracks must take into account both energy flows that are described in conventional continuum theories and details of the environment near the tip that are not.Comment: 6 page
    corecore