3 research outputs found

    Divalent Metal Vinylphosphonate Layered Materials: Compositional Variability, Structural Peculiarities, Dehydration Behavior, and Photoluminescent Properties

    Get PDF
    A family of M-VP (M = Ni, Co, Cd, Mn, Zn, Fe, Cu, Pb; VP = vinylphosphonate) and M-PVP (M = Co, Cd; PVP = phenylvinylphosphonate) materials have been synthesized by hydrothermal methods and characterized by FTIR, elemental analysis, and thermogravimetric analysis (TGA). Their structures were determined either by single crystal X-ray crystallography or from laboratory X-ray powder diffraction data. The crystal structure of some M-VP and M-PVP materials is two-dimensional (2D) layered, with the organic groups (vinyl or phenylvinyl) protruding into the interlamellar space. However, the Pb-VP and Cu-VP materials show dramatically different structural features. The porous, three-dimensional (3D) structure of Pb-VP contains the Pb center in a pentagonal pyramid. A Cu-VP variant of the common 2D layered structure shows a very peculiar structure. The structure of the material is 2D with the layers based upon three crystallographically distinct Cu atoms; an octahedrally coordinated Cu2+ atom, a square planar Cu2+ atom and a Cu+ atom. The latter has an unusual co-ordination environment as it is 3-coordinated to two oxygen atoms with the third bond across the double bond of the vinyl group. Metal-coordinated water loss was studied by TGA and thermodiffractometry. The rehydration of the anhydrous phases to give the initial phase takes place rapidly for Cd-PVP but it takes several days for Co-PVP. The M-VP materials exhibit variable dehydration-rehydration behavior, with most of them losing crystallinity during the process.Proyecto nacional MAT2010-15175 (MICINN, España

    DEPENDENCE OF OPTICAL RESPONSE ON pH OF A WATER-SOLUBLE Zn(II)-METALLOPORPHYRIN

    No full text
    Nowadays, porphyrin derivatives are extensively used as analytical reagents. This work put the basis for a rapid, simple and inexpensive method developed for pH determination. It was demonstrated the potential for a water soluble metalloporphyrin, 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin-Zn(II) tetrachloride (Zn-TNMPyP) to be a potential optical pH sensor in the 5.5-10.5 domain. Monitoring of the variations in the absorption spectra of the Zn-TNMPyP, both regarding the Soret and the Q(0,1) band, generated by the exposure to different base concentrations allowed us to notice the linearity of the response at different pH values
    corecore