777 research outputs found

    Composite fermions from the algebraic point of view

    Full text link
    Composite fermion wavefuctions have been used to describe electrons in a strong magnetic field. We show that the polynomial part of these wavefunctions can be obtained by applying a normal ordered product of suitably defined annihilation and creation operators to an even power of the Vandermonde determinant, which can been considered as a kind of a non-trivial Fermi sea. In the case of the harmonic interaction we solve the system exactly in the lowest Landau level. The solution makes explicit the boson-fermion correspondence proposed recently.Comment: 11 pages 1 figur

    Long hold times in a two-junction electron trap

    Get PDF
    The hold time τ\tau of a single-electron trap is shown to increase significantly due to suppression of environmentally assisted tunneling events. Using two rf-tight radiation shields instead of a single one, we demonstrate increase of τ\tau by a factor exceeding 10310^3, up to about 10 hours, for a trap with only two superconductor (S) -- normal-metal (N) tunnel junctions and an on-chip resistor RR (R-SNS structure). In the normal state, the improved shielding made it possible to observe τ\tau\sim 100 s, which is in reasonable agreement with the quantum-leakage-limited level expected for the two-electron cotunneling process.Comment: 4 pages, 3 figure

    Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes

    Full text link
    Using a generalized model of interaction between a two-level system (TLS) and an arbitrary deformation of the material, we calculate the interaction of Lamb modes with TLSs in amorphous nanoscopic membranes. We compare the mean free paths of the Lamb modes with different symmetries and calculate the heat conductivity κ\kappa. In the limit of an infinitely wide membrane, the heat conductivity is divergent. Nevertheless, the finite size of the membrane imposes a lower cut-off for the phonons frequencies, which leads to the temperature dependence κT(a+blnT)\kappa\propto T(a+b\ln T). This temperature dependence is a hallmark of the TLS-limited heat conductance at low temperature.Comment: 9 pages, 2 figure

    Exact broken-symmetry states and Hartree-Fock solutions for quantum dots at high magnetic fields

    Full text link
    Wigner molecules formed at high magnetic fields in circular and elliptic quantum dots are studied by exact diagonalization (ED) and unrestricted Hartree-Fock (UHF) methods with multicenter basis of displaced lowest Landau level wave functions. The broken symmetry states with semi-classical charge density constructed from superpositions of the ED solutions are compared to the UHF results. UHF overlooks the dependence of the few-electron wave function on the actual relative positions of electrons localized in different charge puddles and partially compensates for this neglect by an exaggerated separation of charge islands which are more strongly localized than in the exact broken-symmetry states.Comment: QD2004 proceedings under press in Physica

    Versatile multipass cell for laser spectroscopic trace gas analysis

    Get PDF
    The design, construction and characterization of a novel circular multipass cell for sensitive trace gas analysis are presented. This cell allows for easy modification of the optical path length without any changes of its physical parameters. Furthermore, it is suited for three different detection techniques: direct absorption, wavelength modulation and photoacoustics. To demonstrate its performance, mixing ratios of 13CO2 and N2O were measured from ambient air, using a quantum cascade laser. With the direct absorption method, noise equivalent 1-s precisions of 2.7ppb and 0.2ppb are achieved for 13CO2 and N2O, respectively. The wavelength modulation technique resulted in 4.3ppb precision with 1-s averaging for the 13CO2 measurements. AQ-factor of 190 and a normalized noise equivalent minimum absorption of 1.3×10−8cm−1 W Hz−1/2 are achieved using the photoacoustic techniqu

    Large diamagnetic persistent currents

    Full text link
    In multichannel rings, evanescent modes will always co-exist with propagating modes. The evanescent modes can carry a very large diamagnetic persistent current that can oscillate with energy and are very sensitive to impurity scattering. This provides a natural explanation for the large diamagnetic persistent currents observed in experiments.Comment: 5 figure

    Broken Symmetries in the Reconstruction of v=1 Quantum Hall Edges

    Full text link
    Spin-polarized reconstruction of the v=1 quantum Hall edge is accompanied by a spatial modulation of the charge density along the edge. We find that this is also the case for finite quantum Hall droplets: current spin density functional calculations show that the so-called Chamon-Wen edge forms a ring of apparently localized electrons around the maximum density droplet (MDD). The boundaries of these different phases qualitatively agree with recent experiments. For very soft confinement, Chern-Simons Ginzburg-Landau theory indicates formation of a non-translational invariant edge with vortices (holes) trapped in the edge region.Comment: Proceedings of the EP2DS, Ottawa (1999) (submitted to Physica E

    Heat transport in ultra-thin dielectric membranes and bridges

    Get PDF
    Phonon modes and their dispersion relations in ultrathin homogenous dielectric membranes are calculated using elasticity theory. The approach differs from the previous ones by a rigorous account of the effect of the film surfaces on the modes with different polarizations. We compute the heat capacity of membranes and the heat conductivity of narrow bridges cut out of such membranes, in a temperature range where the dimensions have a strong influence on the results. In the high temperature regime we recover the three-dimensional bulk results. However, in the low temperature limit the heat capacity, CVC_V, is proportional with TT (temperature), while the heat conductivity, κ\kappa, of narrow bridges is proportional to T3/2T^{3/2}, leading to a thermal cut-off frequency fc=κ/CVT1/2f_c=\kappa/C_V\propto T^{1/2}.Comment: 6 pages and 6 figure

    Comment on Vortex Mass and Quantum Tunneling of Vortices

    Full text link
    Vortex mass in Fermi superfluids and superconductors and its influence on quantum tunneling of vortices are discussed. The vortex mass is essentially enhanced due to the fermion zero modes in the core of the vortex: the bound states of the Bogoliubov qiasiparticles localized in the core. These bound states form the normal component which is nonzero even in the low temperature limit. In the collisionless regime ω0τ1\omega_0\tau \gg 1, the normal component trapped by the vortex is unbound from the normal component in the bulk superfluid/superconductors and adds to the inertial mass of the moving vortex. In the d-wave superconductors, the vortex mass has an additional factor (Bc2/B)1/2(B_{c2}/B)^{1/2} due to the gap nodes.Comment: 10 pages, no figures, version accepted in JETP Letter
    corecore