8 research outputs found

    The reality of cross-disciplinary energy research in the United Kingdom:a social science perspective

    Get PDF
    Cross-disciplinary research is essential in understanding and reducing energy usage, however the reality of this collaboration comes with many challenges. This paper provides an insight into the integration of social science in energy research, drawing on the expertise and first hand experiences of a range of social science researchers (predominantly Early Career Researchers (ECRs)) working on UK cross-disciplinary projects in energy demand. These researchers, participants in a workshop dedicated to understanding the integration of social science in energy research, identified four groups of challenges to successful integration: Differing expectations of the role of social scientists; Working within academia; Feeling like a valued member of the team; and Communicating and comprehension between disciplines. Suggestions of how to negotiate those challenges included: Management and planning; Increasing contact; Sharing experience; and Understanding team roles. The paper offers a definition of ‘success’ in cross-disciplinary energy research from the perspective of social science ECRs, comprising external, internal and personal components. Using the logics of interdisciplinarity, this paper suggests that integration of the social sciences in the projects discussed may be partial at best and highlights a need to recognise the challenges ECRs face, in order to achieve full integration and equality of disciplines

    Blurred lines

    No full text

    Current issues and future directions in methods for studying technology in the home

    Get PDF
    Homes are essential contexts in which to understand how technologies are used and experienced. At the same time they hold substantial challenges for conducting research, exploring novel designs, and building understanding. In this paper we review approaches to studying the home, including recent innovations and issues that should guide further methodological reflection. We draw on the expertise of a large number of researchers experienced in studying technology in the home, who have formed a community to map the space of methods in use and share their experiences of the key issues faced in practice. Themes include utilising new technology as a source of data as well as an object of study, creating representations of home life that support discussion and reflection, revealing details of important yet routine or mundane activities, and supporting participation to overcome the complex ethical and privacy concerns inherent in the study of the home

    Energy-led domestic retrofit: impact of the intervention sequence

    No full text
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ Licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Interviews conducted with householders reveal that energy efficiency is often a lesser motivation than other factors for undertaking home improvement work. Homeowners' approach to refurbishment is typically staged over several years, not as a whole house retrofit. As the operational performance of an individual emission-reducing technology typically depends on what other measures are already in place, the retrofit intervention sequence can potentially affect the overall performance of the dwelling. The impact of the intervention sequence on a semi-detached 1930s house is investigated with dynamic thermal modelling, using five sequences based on different homeowner personas developed from qualitative interviews. The results show that, whilst a whole house retrofit would reduce cumulative CO2 emissions over 25 years by 54%, the sequences actually implemented by the individual households result in significantly smaller reductions of between 42% and 24%. This variation in operational performance due to the intervention sequence means that there is a variable return on the investment for a particular technology and, significantly, that different sequences will yield different cumulative emission reductions. This has significant consequences for policies providing financial incentives for energy-led retrofit, particularly to include the intervention sequence and timing

    Achieving data synergy: the socio-technical process of handling data

    No full text
    Good quality research depends on good quality data. In multidisciplinary projects with quantitative and qualitative data, it can be difficult to collect data and share it between partners with diverse backgrounds in a timely and useful way, limiting the ability of different disciplines to collaborate. This chapter will explore two examples of the impact of data collection and sharing on analysis in a recent Horizon 2020 project, RealValue. The main insight is that it is not only projects but also the processes within them such as data collection, sharing and analysis that are socio-technical. We shall examine two examples within the project—validating the models and triangulating the qualitative data—to examine data synergy across four dimensions: time (synchronising activities), people (managing and coordinating actors), technology (in this case focusing mainly on connectivity) and quality. Recommendations include developing a data protocol for the energy demand community built on these four dimensions
    corecore