6,708 research outputs found
Anderson transitions in three-dimensional disordered systems with randomly varying magnetic flux
The Anderson transition in three dimensions in a randomly varying magnetic
flux is investigated in detail by means of the transfer matrix method with high
accuracy. Both, systems with and without an additional random scalar potential
are considered. We find a critical exponent of with random
scalar potential. Without it, is smaller but increases with the system
size and extrapolates within the error bars to a value close to the above. The
present results support the conventional classification of universality classes
due to symmetry.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
The Anderson transition: time reversal symmetry and universality
We report a finite size scaling study of the Anderson transition. Different
scaling functions and different values for the critical exponent have been
found, consistent with the existence of the orthogonal and unitary universality
classes which occur in the field theory description of the transition. The
critical conductance distribution at the Anderson transition has also been
investigated and different distributions for the orthogonal and unitary classes
obtained.Comment: To appear in Physical Review Letters. Latex 4 pages with 4 figure
Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare
We study the non-thermal emissions in a solar flare occurring on 2003 May 29
by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This
flare shows several typical behaviors of the HXR and microwave emissions: time
delay of microwave peaks relative to HXR peaks, loop-top microwave and
footpoint HXR sources, and a harder electron energy distribution inferred from
the microwave spectrum than from the HXR spectrum. In addition, we found that
the time profile of the spectral index of the higher-energy (\gsim 100 keV)
HXRs is similar to that of the microwaves, and is delayed from that of the
lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms
of an electron transport model called {\TPP}. We numerically solved the
spatially-homogeneous {\FP} equation to determine electron evolution in energy
and pitch-angle space. By comparing the behaviors of the HXR and microwave
emissions predicted by the model with the observations, we discuss the
pitch-angle distribution of the electrons injected into the flare site. We
found that the observed spectral variations can qualitatively be explained if
the injected electrons have a pitch-angle distribution concentrated
perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical
Journa
Multifractal properties of critical eigenstates in two-dimensional systems with symplectic symmetry
The multifractal properties of electronic eigenstates at the metal-insulator
transition of a two-dimensional disordered tight-binding model with spin-orbit
interaction are investigated numerically. The correlation dimensions of the
spectral measure and of the fractal eigenstate are
calculated and shown to be related by . The exponent
describing the energy correlations of the critical
eigenstates is found to satisfy the relation .Comment: 6 pages RevTeX; 3 uuencoded, gzipped ps-figures to appear in J. Phys.
Condensed Matte
Does a magnetic field modify the critical behaviour at the metal-insulator transition in 3-dimensional disordered systems?
The critical behaviour of 3-dimensional disordered systems with magnetic
field is investigated by analyzing the spectral fluctuations of the energy
spectrum. We show that in the thermodynamic limit we have two different
regimes, one for the metallic side and one for the insulating side with
different level statistics. The third statistics which occurs only exactly at
the critical point is {\it independent} of the magnetic field. The critical
behaviour which is determined by the symmetry of the system {\it at} the
critical point should therefore be independent of the magnetic field.Comment: 10 pages, Revtex, 4 PostScript figures in uuencoded compressed tar
file are appende
Is it possible to observe experimentally a metal-insulator transition in ultra cold atoms?
Kicked rotors with certain non-analytic potentials avoid dynamical
localization and undergo a metal-insulator transition. We show that typical
properties of this transition are still present as the non-analyticity is
progressively smoothed out provided that the smoothing is less than a certain
limiting value. We have identified a smoothing dependent time scale such that
full dynamical localization is absent and the quantum momentum distribution
develops power-law tails with anomalous decay exponents as in the case of a
conductor at the metal-insulator transition. We discuss under what conditions
these findings may be verified experimentally by using ultra cold atoms
techniques. It is found that ultra-cold atoms can indeed be utilized for the
experimental investigation of the metal-insulator transition.Comment: 7 pages, 3 figure
Comment on the paper I. M. Suslov: Finite Size Scaling from the Self Consistent Theory of Localization
In the recent paper [I.M.Suslov, JETP {\bf 114} (2012) 107] a new scaling
theory of electron localization was proposed. We show that numerical data for
the quasi-one dimensional Anderson model do not support predictions of this
theory.Comment: Comment on the paper arXiv 1104.043
Is birthweight associated with total and aggressive/lethal prostate cancer risks? A systematic review and meta-analysis
BACKGROUND: It has been hypothesised that intrauterine exposures are important for subsequent prostate cancer risk. Prior epidemiological studies have used birthweight as a proxy of cumulative intrauterine exposures to test this hypothesis, but results have been inconsistent partly because of limited statistical power. METHODS: We investigated birthweight in relation to prostate cancer in the Medical Research Council (MRC) National Survey of Health and Development (NSHD) using Cox proportional hazards models. We then conducted a meta-analysis of birthweight in relation to total and aggressive/lethal prostate cancer risks, combining results from the NSHD analysis with 13 additional studies on this relationship identified from a systematic search in four major scientific literature databases through January 2015. RESULTS: Random-effects models found that per kg increase in birthweight was positively associated with total (OR=1.02, 95% confidence interval (95% CI)=1.00, 1.05; I(2)=13%) and aggressive/lethal prostate cancer (OR=1.08, 95% CI=0.99, 1.19; I(2)=40%). Sensitivity analyses restricted to studies with birthweight extracted from medical records demonstrated stronger positive associations with total (OR=1.11, 95% CI=1.03, 1.19; I(2)=0%) and aggressive/lethal (OR=1.37, 95% CI=1.09, 1.74; I(2)=0%) prostate cancer. These studies heavily overlapped with those based in Nordic countries. CONCLUSIONS: This study provides evidence that heavier birthweight may be associated with modest increased risks of total and aggressive/lethal prostate cancer, which supports the hypothesis that intrauterine exposures may be related to subsequent prostate cancer risks
Critical regime of two dimensional Ando model: relation between critical conductance and fractal dimension of electronic eigenstates
The critical two-terminal conductance and the spatial fluctuations of
critical eigenstates are investigated for a disordered two dimensional model of
non-interacting electrons subject to spin-orbit scattering (Ando model). For
square samples, we verify numerically the relation between critical conductivity and
the fractal information dimension of the electron wave function, . Through a detailed numerical scaling analysis of the two-terminal
conductance we also estimate the critical exponent that
governs the quantum phase transition.Comment: IOP Latex, 7 figure
Tunneling edges at strong disorder
Scattering between edge states that bound one-dimensional domains of opposite
potential or flux is studied, in the presence of strong potential or flux
disorder. A mobility edge is found as a function of disorder and energy, and we
have characterized the extended phase. "paper_FINAL.tex" 439 lines, 20366
characters In the presence of flux and/or potential disorder, the localization
length scales exponentially with the width of the barrier. We discuss
implications for the random-flux problem.Comment: RevTeX, 4 page
- …
