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Anderson transition in ultracold atoms: Signatures and experimental feasibility
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Kicked rotators with certain nonanalytic potentials avoid dynamical localization and undergo a metal-
insulator transition. We show that typical properties of this transition are still present as the nonanalyticity is
progressively smoothed out provided that the smoothing is less than a certain limiting value. We have identified
a smoothing-dependent time scale such that full dynamical localization is absent and the quantum momentum
distribution develops power-law tails with anomalous decay exponents as in the case of a conductor at the
metal-insulator transition. We discuss under what conditions these findings may be verified experimentally by
using ultracold atom techniques. It is found that ultracold atoms can indeed be utilized for the experimental

investigation of the metal-insulator transition.
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I. INTRODUCTION

The study of a quantum particle in a random potential [1]
is one of the cornerstones of modern condensed matter phys-
ics. In its simplest form—namely, a free spin-less particle in
a short-range disordered potential with no interactions at
zero temperature—the combination of the one-parameter
scaling theory [2], the supersymmetry method [3], and nu-
merical simulations [4] has led to the following picture: In
two and lower dimensions destructive interference caused by
backscattering produces exponential localization of the
eigenstates in real space for any amount of disorder. As a
consequence, quantum transport is suppressed, the spectrum
is uncorrelated (Poisson), and the system becomes an insu-
lator. In more than two dimensions there exists a metal insu-
lator transition [usually referred to as the Anderson transition
(AT)] for a critical amount of disorder. By critical disorder
we mean a disorder such that, if increased, all the eigenstates
become exponentially localized. For a disorder strength be-
low the critical one, the system has a mobility edge at a
certain energy which separates localized from delocalized
states. Its position moves away from the band center as the
disorder is decreased. Delocalized eigenstates, typical of a
metal, are extended through the sample, and level statistics
agrees with the random matrix prediction for the appropriate
symmetry. In three and higher dimensions the AT takes place
in a region of strong disorder only accessible to numerical
[4,5] simulations. Typical features of the AT include the fol-
lowing.

(i) Scale invariance [6] of the spectrum; namely, any spec-
tral correlator utilized to describe the spectral properties of
the disordered Hamiltonian does not depend on the system
size. The spectral correlations at the AT, usually referred to
as critical statistics [6,7], are intermediate between that of a
metal and that of an insulator.

(ii) Anomalous scaling of the eigenfunction moments,
P,=[dr|{r)[*7 o L~P44=V), with respect to the sample size
L, where D, is a set of exponents describing the AT. Eigen-
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functions with such a nontrivial (multi)scaling are usually
dubbed multifractals [5] (for a review see [8]).

(iii)) Quantum diffusion is anomalous [9] at the AT. In the
metallic limit, up to small weak localization corrections, the
density of probability is Gaussian like and the dynamics is
well described by a Brownian motion. However, as disorder
increases, localization effects become important and quan-
tum diffusion slows down. The density of probability devel-
ops power-law tails with a decay exponent depending on the
spectrum of multifractal dimensions [9].

Unfortunately the experimental verification of the AT is a
challenging task. In the context of electronic systems is ex-
tremely hard to disentangle effects caused by short decoher-
ence times, electron-electron interactions, and phonon-
electron interactions from destructive quantum interference,
supposed to be the main ingredient driving the AT.

In recent years ultracold atoms in optical lattices [10] has
been utilized to model certain solid-state physics systems.
Generically, in these experiments a very dilute almost free
gas of atoms (Cs and Rb) is cooled up to temperatures of the
order of tens of microkelvins and then interacts with an op-
tical lattice. In its simplest form, the optical lattice consists
of two laser beams prepared in such a way that the resulting
interference pattern is a stationary plane wave in space. The
laser frequency is tuned close to a resonance of the atomic
system in order to enhance the atom-laser coupling but not
too close to avoid spontaneous emission. In this limit the
laser-atom system can be considered as a point particle in a
sine potential—namely, the quantum pendulum. Addition-
ally, if the laser is turned on only in a series of short periodic
pulses, the resulting system is very well approximated by the
so-called quantum kicked rotor (see [11] for a review) exten-
sively studied in the context of quantum chaos,

H =p*2 +kcos(q) >, 8t—Tn). (1)

The classical motion of this system is diffusive in momen-
tum space. For short time scales, quantum and classical mo-
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tions agree. However, quantum diffusion is eventually sup-
pressed due to interference effects and eigenstates are
exponentially localized in momentum space. This counterin-
tuitive feature, usually referred to as dynamical localization
[12], was fully understood [13] after mapping the kicked
rotator problem onto an short-range one-dimensional (1D)
disordered system where localization is well established. The
first direct experimental realization of the kicked rotor was
reported in Ref. [10]. As was expected, the output of the
experiment (the distribution of the atom momentum and the
energy diffusion as a function of time) fully agrees with the
theoretical prediction of dynamical localization [13]. Finally
we remark that, after the pioneering work of Ref. [10], many
other aspects of the physics of a quantum kicked rotor such
as the effect of noise and dissipation have also been investi-
gated [15] by using similar experimental settings.

The above results do not depend on the exact details of
the potential but only on its ability to produce classical cha-
otic motion. The situation is different if the potential is not
smooth. Recently [16], it has been reported that a kicked
rotor could avoid full dynamical localization if the smooth
sinusoidal optical potential is replaced with a generic poten-
tial with a logarithmic or steplike singularity. It was found
that, for these potentials, the kicked particle has striking
similarities with a free particle in a disordered potential at the
AT. Thus level statistics are given by critical statistics, eigen-
functions are multifractal, and quantum diffusion becomes
anomalous.

A natural question to ask is whether this nonanalytical
kicked rotor can be realized in experiments. If so, this would
be an ideal setting to test the physics of the AT. We notice
that this is far from evident. Other similar proposals [14]
turned out hard to implement in the laboratory.

Obviously, in experiments the singularity can only be ap-
proximated. For instance, an optical lattice potential with an
approximate steplike singularity can be produced [18] either
by a holographic mask [19] with precision ¢ or by adding a
limited number of Fourier components. In both cases the
potential is smooth on sufficiently small scales ~o. That
means that for momenta p,>%/0 and times ¢, sufficiently
long, the microscopic smoothness of the potential is at work
and standard dynamical localization should be observed. On
the other hand, for momenta p. and times ¢, sufficiently
short, classical and quantum results should coincide. In be-
tween these two scales typical properties of the AT are ob-
served. The aim of this paper is twofold: on the one hand, we
seek to determine in what window of o the AT is observed.
On the other hand, we examine whether this range is already
experimentally accessible by using ultracold atoms in optical
lattices.

The organization of the paper is as follows: In the next
section we introduce a kicked rotor with two different
smoothed out versions of a step potential. Then we evaluate
the rate of energy diffusion and the full momentum distribu-
tion. Finally we establish the minimum smoothing required
to observe the AT and whether an experimental verification is
realistic with the current, state-of-the-art, ultracold atom
techniques.
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II. MODEL AND OBSERVABLES

We investigate a kicked rotor in 1+ 1D with a smoothed
steplike potential,

2
M=o Vis(g) S =), @

with g € [-7, 7). We consider the following two potentials:

vw=s{(5+e) [o)sl(3-0) /o)

sin(r)
where Si(q)=[{——dt is the sine integral function and

M
Vy(q) = 2 flm)cos(mg), (4)
m=0

where f(m) is the discrete Fourier transform of the bare step-
like potential V(g)=m for |g|<w/2 and zero otherwise. In
both cases for 0— 0 (0=1/M in the latter case) we recover
the bare steplike potential investigated in [16]. There are
infinitely many ways to smooth a singularity. We have cho-
sen the above two due to similarities with the experimental
situation. Thus V,(g) represents an optical lattice with
square-wave intensity profile as produced by an array of fine
slits or a holographic mask [19]. The other potential V(g)
produces an approximated steplike shape by adding a limited
number of Fourier components. We remark that results for
Vi(q) and V,(g) are hardly distinguishable; both are smooth
and oscillatory on scales of the order of o. Numerically it is
a little easier to simulate V,(g), so we will stick to it for our
calculations.

We analyze both the classical and quantum motions of the

above Hamiltonian. The classical evolution over a period T
L V(g
is dictated by the map p,.,1=p,= .= @ur1=qn+ TPps1 (mod

21r). By smoothing the step potential the classical force has a
well-defined classical limit for any finite o.

The quantum dynamics is governed by the quantum evo-
lution operator U/ over a period T. Thus, after a period 7, an
initial state i, evolves to (T)=Uy=e~# T2he=V @y,
where p and ¢ stand for the usual momentum and position
operators. Our aim is to evolve a given initial state to a
certain time n7. This is equivalent to solving the eigenvalue
problem YW, =¢~ /" where ¥, is an eigenstate of I/ with
quasieigenvalue «,. In order to proceed we can express the
evolution operator {(m|U|n)=U,,, in the basis of momentum

. oint .
eigenstates {|n)= 5=} with n=0,...,N—,
e—i(Tﬁ/4)(m2+nz) T - A
Umn — gy f dqezq(m—n)—zV(q)/ﬁ ) (5)
-7

We remark that in this representation, referred to as the “cyl-
inder representation,” the resulting matrix U, is unitary ex-
clusively in the N — oo limit. This is certainly a disadvantage
since besides typical finite-size effects one has also to face
truncation effects; namely, the integral of the density of prob-
ability is not exactly unity and eigenvalues are not pure
phases (e~/%) as expected in a unitary matrix. Moreover, the

063629-2



ANDERSON TRANSITION IN ULTRACOLD ATOMS:...

diagonalization of a generic nonunitary matrix is numerically
much more demanding.

These difficulties can be circumvented by changing rep-
resentations in each quantum iteration step, a technique ex-
tensively adopted in quantum kicked rotator studies. First,
we express a given state i in position representation, so that
it is straightforward to get ' =e¢~V@/hy; the state just after
the kick. Next, we express ¢’ in the angular momentum
representation by using the fast Fourier transformation (FFT)
algorithm to facilitate the calculation of e=#°72"'. Since no
matrix diagonalization is involved in this scheme, the com-
putation is quite fast and the effective dimension of the state
vectors is as large as 10%. As a result the truncation effects
mentioned above can be safely neglected. We recall that this
method allows us to resolve the potential with a precision of
1078, four orders less than the minimum o(107%) investi-
gated. Such a degree of precision is a necessary requirement
to determine the effect of a small o in the quantum transport
properties of the model studied.

Analytical results for the above model can in principle be
obtained by mapping Eq. (2) onto a 1D Anderson model.
This method was introduced in [13] for the case of a kicked
rotor with a smooth potential. We do not repeat here the
details of the calculation but just state how the 1D Anderson
model is modified by the nonanalytical potential. It turns out
that the classical nonanalyticity induces long-range disorder
in the associated 1D Anderson model. If the kick strength is
sufficiently large, the diagonal part of the Anderson model is
pseudorandom and the off-diagonal one decays as U,~1/r
with r the distance from the diagonal. This Anderson model
is similar to the one studied in [5] which is solved by using
the supersymmetry method. In general, according to Ref. [5],
a 1/r decay in 1D is the signature of an AT. For the potential
Vi, above, it is straightforward to show that U,~1/r for r
<1/oand U,~ e for r>1/0. Consequently we expect to
observe AT-like behavior for small momentum and then
eventually recover the results of the sinusoidal potential—
namely, exponential localization in momentum space. For
further details of the analytical approach we refer to [16].

We are mainly interested in observables related to trans-
port properties as the density of probability and the rate of
diffusion.

The density of probability of finding a particle with mo-
mentum p after a time ¢ for a given initial state |(0))=0).
P, (p.0)=P(k,1)=|(k| $(1))|* with p=Kkfi. In all calculations
we set fi=1. The classical P(p,1) is obtained by evolving the
classical equation of motion for 2 X 107 different initial con-
ditions with zero momentum p=0 and uniformly distributed
positions along the interval (—, ). We would like to em-
phasize our results do not depend on the initial conditions.
For instance, we have obtained similar results if the initial
conditions of Ref. [17] are utilized.

We also examine the second moment of the probability
distribution—namely, the energy diffusion  (p?(¢))
=[dpp*P(p,1) as a function of time.

We recall our aim is to find out whether the transport
properties are compatibles with those of a disordered con-
ductor at the AT and how they are affected by the short-
distance differentiability of the potential. For the sake of
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completeness let us briefly summarize the predictions for
both a kicked particle in a smooth potential and a disordered
conductor at the AT.

For a kicked rotator with a smooth potential, it is well
established that initially (up to a certain time ,) both classi-
cal and quantum probabilities are Gaussian like and the dif-
fusion in momentum is normal—namely, a standard Brown-
ian motion. For longer times the classical density of
probability is still that of a normal diffusion process. How-
ever, P (p,t) become exponentially localized and energy dif-
fusion stops {p*(f)) ~ const. These are typical signatures of
dynamical localization.

At the AT, up to a certain ., agreement is also expected
between the classical and quantum predictions. In the case of
a disordered conductor the classical dynamics is obviously
well described by a Brownian motion. However, for t>1,
the diffusion becomes anomalous, the quantum density of
probability develops power-law tails in space (localization in
a disordered conductor occurs in real space), and time with
exponents related to the multifractal dimensions of the eigen-
states [9]. The rate of diffusion is in some cases still similar
to the one corresponding to normal diffusion <p2(t))=qumt,
though the quantum diffusion constant D, is typically
lower. This suggests that, at the AT, destructive interference
is still at work but it is not sufficient to fully localize the
particle. In our case we also expect agreement between clas-
sical and quantum results up to a certain time 7.(o). Addi-
tionally, since the potential is differentiable for distances
smaller than the smoothing o, we expect that there exists a
t,(o) such that for 1> t; standard dynamical localization be-
comes dominant.

Typical features of the AT transition are thus observed in
our model only if 7,<<7,. It is unclear for what range of o,
t,>t. and whether these values of o can be reached experi-
mentally. We answer these questions in the next section.

III. RESULTS

For the sake of clearness we first enunciate our main con-
clusions.

(i) Typical features of an AT are observed for 0=<0.05 and
1,511,

(ii) The quantum-classical breaking time 7. remains al-
most unchanged with o. In the range of o investigated ¢,
=< 10. By contrast, the time scale signaling the beginning of
full dynamical localization, due to the differentiability of the
potential, increases as o decreases, t,~2/0.

(iii) The above range of parameters is accessible to ex-
perimental verification. By using holographic mask tech-
niques one can reach up to o~ 0.01 [18]. On the other hand,
coherence in ultracold atoms is maintained well beyond 1000
kicks. Consequently the AT can be investigated by using ul-
tracold atoms in optical lattices.

We have computed (see details in previous section) the
quantum and classical density of probability for the Hamil-
tonian (2) with potentials given by Eq. (3) and a variety of
smoothings o e [0.1,107%].

Our first task is to determine ¢, and 7, as a function of o.
These time scales can in principle be calculated by using
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different observables. Qualitatively all observables should
provide the same physical picture. However, the numerical
value of 7. and 7; may depend on the observable considered.
For the sake of simplicity we estimate these time scales by
looking at the rate of energy diffusion (p?(r)).

A. Energy diffusion

Classically as initial conditions we use py=0 and ¢, a
random number from the interval [, 7r]. Obviously only
initial conditions in the narrow region [—-7m+o,m—0] get a
sizable kick. Thus even after several kicks there is a high
probability that the system stays in the region p=0. In order
to show that our results are not sensitive to initial conditions
and stable under perturbations we have added a weak noise
V(g)=k sin(g) with k=1. We have not observed any depen-
dence on k provided k<<1/0. For k~1/0 the effect of the
pseudosingularity is obscured by the noise strength.

In the classical case (see Fig. 1) (p*(z)) increases linearly
with time. The dependence of the diffusion coefficient on o
is well approximated by D=0.5/c¢. This is consistent with
the analytical prediction resulting from the random phase
approximation [20]. In the quantum case (see Fig. 1) we
distinguish three different regions. In a first stage (r<<t,

<10) the quantum-averaged energy agrees with its classical
counterpart. The breaking time 7. depends quite weakly on o.
For longer times . <t <t,, the diffusion is still similar to the
classical case, (p*(1)) = D 4ut, With D, ~ 0.2/ 0. However,
though dependence on o is the same, the numerical value of
the diffusion coefficient is smaller than the classical one.
This suggests that quantum interference effects slow down
the classical diffusion. A similar feature has been found in a
disordered conductor at the AT [9]. This stage lasts up to 1,
~2/o. For longer times standard dynamical localization due
to the differentiability of the potential takes over and diffu-
sion stops.

We recall that (p?(t)) ~ ¢ is only a necessary condition for
normal diffusion. In general, the information obtained from
the knowledge of a few moments of the distribution is not
sufficient to fully characterize the classical motion. For in-
stance, the second moment may be {p*(t)) ~ ¢ but this by no
means assures that the density of probability is Gaussian like
[21]. We show below that this is precisely the case in our

model.

B. Density of probability

We distinguish the following two regions in the classical
density of probability (see Fig. 2): First, for short time scales
(a few kicks) and |p| < c(o)\2Dt the diffusion is anomalous.
P(p,t)~p~® with «~2 and c(o)=1 slightly increases as o
decreases. For such a short time scale the classical system
does not feel the differentiability of the potential. The ob-
served wiggling for p’>1 is a direct consequence of the
strong oscillations of the potential (3) in the region close to
the edges of the smoothed step potential.

For longer times but t<<t;, we observe a gradual cross-
over from anomalous to normal diffusion. For small momen-
tum the density is still non-Gaussian as the effect of the
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FIG. 1. (Color online) Comparison of quantum and classical
energy diffusion versus time (number of kicks) for different
smoothings: o=5X 1072 (a), =102 (b), and =103 (c). The
quantum initial condition |(0))=|0) was chosen to mimic its clas-
sical counterpart. For #<t. quantum and classical diffusion rates are
similar. For 7;,~2/0 the quantum energy diffusion gets saturated
due to destructive interference. In between these two scales the
system behaves as a disordered conductor at the AT.

pseudonondifferentiability is still important. As time ap-
proaches 7,4, the central (small momentum) non-Gaussian re-
gion becomes smaller and smaller. Meanwhile, the outskirts
bend down and a Gaussian-like behavior typical of normal
diffusion is observed. Finally, for t>1, P(p,t) is well ap-
proximated by a Gaussian distribution. These regions have
been observed for all o of interest.

To evaluate P(p,t), we count the number of systems
whose momentum falls in (p—Ap/2,p+Ap/2) at time ¢, then
approximate P(p,t) with the its ratio to the size of the en-
semble. For the calculations in Fig. 2 we set Ap=0.03\s’TDt
and the corresponding Ap’=0.03.
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FIG. 2. (Color online) Classical density of probability distribu-
tion P(p’,1) for =103 and p’ =p/ \2Dt. (a) Region of anomalous
diffusion, < 10, (b) crossover from anomalous to normal diffusion
10<r<ty;~2/0, and (c) normal diffusion #>r, The results were
obtained after averaging over 2 X 107 initial conditions.

In the quantum case three regions are distinguished (see
Fig. 3).

(i) t<t. and |p|<c(o)\2Dt with D=~0.5/¢ [c(o) in-
creases slightly as o decreases]. In agreement with the re-
sults on energy diffusion (see Fig. 1) both classical and quan-
tum probabilities also agree in this region (see Fig. 4). The
time scale 7. depends also weakly on . This is not surprising
since our system has not a well-defined classical-quantum
correspondence in the limit o0—0. The diffusion is also
anomalous, P,(p,t)=P(p,t)~ 1/p?. As in the classical case,
P,(p,t) was calculated by summing up the probability falling
in a bin of width Ap. We set Ap=2\t (corresponding Ap’
=2/2D=~0.063) for Fig. 3; hence, it is in fact a coarse-
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FIG. 3. (Color online) Quantum density of probability distribu-
tion P,(p',1), p'=p/\2Dt and o=10"* for three different regions:
(a) 1<1.=<10, agreement between classical and quantum results, (b)
t.<t<ty,, typical properties of an AT are observed, and (c) r>1,,
standard dynamical localization for |p|>\e“%. In the insets we
present the same results in a linear-log scale. P, (p',1)~ 1/p? for
1<t, and |p| <1, and Py(p',1)~1/p® with a=1.1£0.2 for 1>1,.
As initial condition we used |¢(0))=|0).

grained result where part of the quantum fluctuations have
been suppressed.

(ii) For |p|<c(o) \2Dt but t;>t>1,.. The quantum prob-
ability P,(p,t) ~1/p* develops a power-law tail with an ex-
ponent a <2 (see Fig. 3) typical of anomalous diffusion. The
exponent a does not depend on o in all cases, we have
found a~1.1+0.2. This is a clear signature of an AT. We
remark that, in agreement with the energy diffusion results of
the previous section, the quantum decay is slower than the
classical one. Quantum interference slows down the motion
but it is not enough to fully localize the particle.
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FIG. 4. (Color online) Comparison of the classical density of
probability distribution P(p’,r) and its quantum counterpart
Py(p’,1) in the range 1<1, <10, p'=p/\2Dt, =107, and the bin
width Ap’=2/y2D=0.063. For the sake of clearness, the results
for r=3 and r=9 are shifted by a factor C(3)=1073, and C(9)
=107, respectively; C(1)=1. As was expected, we observe agree-
ment between classical and quantum results in the region p’ <1.

(iii) For |p|>c(a)v'Tm and t>1,, P,(p,1) decays expo-
nentially. This is an indication of full dynamical localization
due to the differentiability of the potential.

From the above we can affirm that in order to observe
typical features of an AT in the transport properties of our
system, 7, and 7; must be well separated—namely, 7,>1>¢,.
As is shown in Fig. 3 and Table I, this occurs provided that
0=0.05. Thus for an experimental verification of the AT in
cold atoms one has to manage to produce a bare step poten-
tial up to corrections of order o=<0.05

C. Experimental verification

A natural question to ask is what is the minimum value of
o that it can be reached in experiments. Specifically, we wish
to determine, for instance, the maximum number of terms in
V,(q) that can be included experimentally. In principle [18] it
is a challenging experimental task to built optical potentials
with high slopes involving higher optical harmonics of the
laser beam. The problem is that—for instance, for Cs—the
fourth harmonic is already in the vacuum ultraviolet and dif-
ficult to produce. Moreover, higher-order harmonics are not
resonant with the atom and need a much stronger intensity.

TABLE I. Time scales ¢, and z, for various values of o.

o t, ty
1x107! 7+4 11+3
5%1072 T+4 35+10
2x1072 7+4 50+25
1x1072 T+4 250+50
5%1073 8+4 410+100
2x1073 8+4 1300250
1x1073 8+4 2000+400
5x 107 8+4 48001200

PHYSICAL REVIEW A 74, 063629 (2006)

Thus it seems extremely hard to go beyond the first few
harmonics. Another option is to use a kicked rotor with a
smooth potential and three incommensurate frequencies. Ac-
cording to the results of [22], this model is mapped it onto a
3D Anderson model which is supposed to undergo an AT for
a specific value of the coupling constant. However, in more
than one dimension there is no clear evidence that this map-
ping is really accurate. For instance, the critical exponents at
the AT are very different from the one found in the kicked
rotor with three incommensurate frequencies [23].

A more promising alternative is to use a holographic mask
to give a square-wave intensity profile [19]. This technique,
combined with the recent introduction of spatial light modu-
lators, permits the production of a very broad range of inten-
sity patterns which act as an effective spatial potential for
atoms. Moreover, the sharpness of the edges is limited only
by diffraction effects of the order of the wavelength [18].
With the current techniques the potential of Eq. (3) could be
produced in a window o= 1072. On the other hand, quantum
coherence in cold atoms is lost after a few thousand kicks.
The experimental bounds are thus within the theoretical lim-
its and, as a consequence, the AT can be studied by using
ultracold atoms in optical lattices.

A final remark is in order. Signatures of an AT are not
only found in the transport properties but also in the level
statistics and the anomalous scaling of the eigenfunctions. In
this paper we have focused only on the transport properties
because our main motivation is to explore experimental sig-
natures of the AT in ultracold atoms. Although not relevant
for experiments, we would like to say a few words about the
effect of a smoothed singularity on level statistics. We have
recently [16] showed that in the limit o— 0 the level statis-
tics associated to the spectrum of the Hamiltonian (3) is
similar to that of a disordered conductor at the Anderson
transition. For any finite o deviations from this critical be-
havior are expected as a function of the parameter y=oN
where N is the size of the system. Spectral correlations of
eigenvalues separated a distance s <y [with s=(E;,—E))/A
and A the mean level spacing] are not affected by a finite o.
However, Poisson statistics due to the differentiability of the
potential is expected for spectral correlations in the region
s>>y.

In conclusion, we have explicitly shown that a kick rota-
tor with a singular but slightly smoothed potential still has
similar transport properties as those of a disordered conduc-
tor at the AT provided that the degree of smoothing is weak
enough. The utilization of ultracold atoms in optical lattices
offers the opportunity to investigate Anderson localization in
general and the AT in particular in a setting free from many
of the inconveniences that have plagued other experimental
studies of the AT in the context of condensed matter physics.
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