288 research outputs found
The form of cosmic string cusps
We classify the possible shapes of cosmic string cusps and how they transform
under Lorentz boosts. A generic cusp can be brought into a form in which the
motion of the cusp tip lies in the plane of the cusp. The cusp whose motion is
perpendicular to this plane, considered by some authors, is a special case and
not the generic situation.
We redo the calculation of the energy in the region where the string overlaps
itself near a cusp, which is the maximum energy that can be released in
radiation. We take into account the motion of a generic cusp and the resulting
Lorentz contraction of the string core. The result is that the energy scales as
instead of the usual value of , where is the
string radius and and is the typical length scale of the string. Since for cosmological strings, the radiation is strongly suppressed and could
not be observed.Comment: 15 pages, ReVTex, 2 postscript figures with eps
Field theory simulation of Abelian-Higgs cosmic string cusps
We have performed a lattice field theory simulation of cusps in Abelian-Higgs
cosmic strings. The results are in accord with the theory that the portion of
the strings which overlaps near the cusp is released as radiation. The radius
of the string cores which must touch to produce the evaporation is
approximately in natural units. In general, the modifications to the
string shape due to the cusp may produce many cusps later in the evolution of a
string loop, but these later cusps will be much smaller in magnitude and more
closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps
Sum Rules for Magnetic Moments and Polarizabilities in QED and Chiral Effective-Field Theory
We elaborate on a recently proposed extension of the Gerasimov-Drell-Hearn
(GDH) sum rule which is achieved by taking derivatives with respect to the
anomalous magnetic moment. The new sum rule features a {\it linear} relation
between the anomalous magnetic moment and the dispersion integral over a
cross-section quantity. We find some analogy of the linearized form of the GDH
sum rule with the `sideways dispersion relations'. As an example, we apply the
linear sum rule to reproduce the famous Schwinger's correction to the magnetic
moment in QED from a tree-level cross-section calculation and outline the
procedure for computing the two-loop correction from a one-loop cross-section
calculation. The polarizabilities of the electron in QED are considered as well
by using the other forward-Compton-scattering sum rules. We also employ the sum
rules to study the magnetic moment and polarizabilities of the nucleon in a
relativistic chiral EFT framework. In particular we investigate the chiral
extrapolation of these quantities.Comment: 24 pages, 7 figures; several additions, published versio
Evolution of Primordial Black Hole Mass Spectrum in Brans-Dicke Theory
We investigate the evolution of primordial black hole mass spectrum by
including both accretion of radiation and Hawking evaporation within
Brans-Dicke cosmology in radiation, matter and vacuum-dominated eras. We also
consider the effect of evaporation of primordial black holes on the expansion
dynamics of the universe. The analytic solutions describing the energy density
of the black holes in equilibrium with radiation are presented. We demonstrate
that these solutions act as attractors for the system ensuring stability for
both linear and nonlinear situations. We show, however, that inclusion of
accretion of radiation delays the onset of this equilibrium in all radiation,
matter and vacuum-dominated eras.Comment: 18 pages, one figur
Cosmic Rays From Cosmic Strings
It has been speculated that cosmic string networks could produce ultra-high
energy cosmic rays as a by-product of their evolution. By making use of recent
work on the evolution of such networks, it will be shown that the flux of
cosmic rays from cosmologically useful, that is GUT scale strings, is too small
to be used as a test for strings with any foreseeable technology.Comment: 11, Imperial/TP/93-94/2
Accretion, Primordial Black Holes and Standard Cosmology
Primordial Black Holes evaporate due to Hawking radiation. We find that the
evaporation time of primordial black holes increase when accretion of radiation
is included.Thus depending on accretion efficiency more and more number of
primordial black holes are existing today, which strengthens the idea that the
primordial black holes are the proper candidate for dark matter.Comment: 11 pages, 3 figure
Comment on ``Evidence for Narrow Baryon Resonances in Inelastic pp Scattering''
Compton scattering data are sensitive to the existence of low-mass resonances
reported by Tatischeff et al. We show that such states, with their reported
properties, are excluded by previous Compton scattering experiments.Comment: One page, submitted to PR
Constraints on Cosmic Strings due to Black Holes Formed from Collapsed Cosmic String Loops
The cosmological features of primordial black holes formed from collapsed
cosmic string loops are studied. Observational restrictions on a population of
primordial black holes are used to restrict , the fraction of cosmic string
loops which collapse to form black holes, and , the cosmic string
mass-per-unit-length. Using a realistic model of cosmic strings, we find the
strongest restriction on the parameters and is due to the energy
density in photons radiated by the black holes. We also find that
inert black hole remnants cannot serve as the dark matter. If earlier, crude
estimates of are reliable, our results severely restrict , and
therefore limit the viability of the cosmic string large-scale structure
scenario.Comment: (Plain Tex, uses tables.tex -- wrapped lines corrected), 11 pages,
FERMILAB-Pub-93/137-
Blue spectra and induced formation of primordial black holes
We investigate the statistical properties of primordial black hole (PBH)
formation in the very early Universe. We show that the high level of
inhomogeneity of the early Universe leads to the formation of the first
generation PBHs. %The existence of these PBHs This causes later the appearance
of a dust-like phase of the cosmological expansion. We discuss here a new
mechanism for the second generation of PBH formation during the dust-like
phase. This mechanism is based on the coagulation process. We demonstrate that
the blue power spectrum of initial adiabatic perturbations after inflation
leads to overproduction of primordial black holes with gg if the power index is .Comment: 16 pages, 2 figure
Primordial black hole constraints in cosmologies with early matter domination
Moduli fields, a natural prediction of any supergravity and
superstring-inspired supersymmetry theory, may lead to a prolonged period of
matter domination in the early Universe. This can be observationally viable
provided the moduli decay early enough to avoid harming nucleosynthesis. If
primordial black holes form, they would be expected to do so before or during
this matter dominated era. We examine the extent to which the standard
primordial black hole constraints are weakened in such a cosmology. Permitted
mass fractions of black holes at formation are of order , rather than
the usual or so. If the black holes form from density perturbations
with a power-law spectrum, its spectral index is limited to ,
rather than the obtained in the standard cosmology.Comment: 7 pages RevTeX file with four figures incorporated (uses RevTeX and
epsf). Also available by e-mailing ARL, or by WWW at
http://star-www.maps.susx.ac.uk/papers/infcos_papers.htm
- …
