2,815 research outputs found

    Interaction-induced current-reversals in driven lattices

    Full text link
    We demonstrate that long-range interactions can cause, as time evolves, consecutive reversals of directed currents for dilute ensembles of particles in driven lattices. These current-reversals are based on a general mechanism which leads to an interaction-induced accumulation of particles in the regular regions of the underlying single-particle phase space and to a synchronized single-particle motion as well as an enhanced efficiency of Hamiltonian ratchets.Comment: 5 pages, 5 figure

    Circadian Organization in Hemimetabolous Insects

    Get PDF
    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm

    Directed transport and localization in phase-modulated driven lattices

    Full text link
    We explore the dynamics of non-interacting particles loaded into a phase-modulated one-dimensional lattice formed by laterally oscillating square barriers. Tuning the parameters of the driven unit cell of the lattice selected parts of the classical phase space can be manipulated in a controllable manner. We find superdiffusion in position space for all parameters regimes. A directed current of an ensemble of particles can be created through locally breaking the spatiotemporal symmetries of the time-driven potential. Magnitude and direction of the current are tunable. Several mechanisms for transient localization and trapping of particles in different wells of the driven unit cell are presented and analyzed

    Cosmological diagrammatic rules

    Full text link
    A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.Comment: 7 pages, 3 figure

    Adaptation to different types of stress converge on mitochondrial metabolism

    Get PDF
    Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism

    Spin-orbit coupled Bose-Einstein condensate in a tilted optical lattice

    Full text link
    Bloch oscillations appear for a particle in a weakly tilted periodic potential. The intrinsic spin Hall effect is an outcome of a spin-orbit coupling. We demonstrate that both these phenomena can be realized simultaneously in a gas of weakly interacting ultracold atoms exposed to a tilted optical lattice and to a set of spatially dependent light fields inducing an effective spin-orbit coupling. It is found that both the spin Hall as well as the Bloch oscillation effects may coexist, showing, however, a strong correlation between the two. These correlations are manifested as a transverse spin current oscillating in-phase with the Bloch oscillations.Comment: 12 pages, 7 figure

    Quantifying and reducing cross‐contamination in single‐ and multiplex hybridization capture of ancient DNA

    Get PDF
    The use of hybridization capture has enabled a massive upscaling in sample sizes for ancient DNA studies, allowing the analysis of hundreds of skeletal remains or sediments in single studies. Nevertheless, demands in throughput continue to grow, and hybridization capture has become a limiting step in sample preparation due to the large consumption of reagents, consumables and time. Here, we explored the possibility of improving the economics of sample preparation via multiplex capture, that is, the hybridization capture of pools of double-indexed ancient DNA libraries. We demonstrate that this strategy is feasible, at least for small genomic targets such as mitochondrial DNA, if the annealing temperature is increased and PCR cycles are limited in post-capture amplification to avoid index swapping by jumping PCR, which manifests as cross-contamination in resulting sequence data. We also show that the reamplification of double-indexed libraries to PCR plateau before or after hybridization capture can sporadically lead to small, but detectable cross-contamination even if libraries are amplified in separate reactions. We provide protocols for both manual capture and automated capture in 384-well format that are compatible with single- and multiplex capture and effectively suppress cross-contamination and artefact formation. Last, we provide a simple computational method for quantifying cross-contamination due to index swapping in double-indexed libraries, which we recommend using for routine quality checks in studies that are sensitive to cross-contamination

    Concentração e época de aplicação de AminoetoxiVinilGlicine (AVG) na maturação de macieiras 'Fuji Suprema'.

    Get PDF
    bitstream/item/45481/1/ADM11003.pd

    Iodine speciation in rain, snow and aerosols and possible transfer of organically bound iodine species from aerosol to droplet phases

    No full text
    International audienceIodine oxides, such as iodate, should theoretically be the only stable sink species for iodine in the troposphere. However, field observations have increasingly found very little iodate and significant amounts of iodide and organically bound iodine in precipitation and aerosols. The aim of this study was to investigate iodine speciation, including the organic fraction, in rain, snow, and aerosols in an attempt to further clarify aqueous phase iodine chemistry. Diurnal aerosol samples were taken with a 5 stage cascade impactor and a virtual impactor (PM2.5) from the Mace Head research station, Ireland, during summer 2006. Rain was collected from Australia, New Zealand, Patagonia, Germany, Ireland, and Switzerland while snow was obtained from Greenland, Germany, Switzerland, and New Zealand. All samples were analysed for total iodine by inductively coupled plasma mass spectrometry (ICP-MS) and speciation was determined by coupling an ion chromatography unit to the ICP-MS. Total iodine in the aerosols from Mace Head gave a median concentration of 50 pmol m?3 of which the majority was associated with the organic fraction (median day: 91±7%, night: 94±6% of total iodine). Iodide exhibited higher concentrations than iodate (median 5% vs. 0.8% of total iodine), and displayed significant enrichment during the day compared to the night. Interestingly, up to 5 additional, presumably anionic organic peaks were observed in all IC-ICP-MS chromatograms, composing up to 15% of the total iodine. Organically bound iodine was also the dominant fraction in all rain and snow samples, with lesser amounts of iodide and iodate (iodate was particularly low in snow). Two of the same unidentified peaks found in aerosols were also observed in precipitation from both Southern and Northern Hemispheres, suggesting that these species are transferred from the aerosol phase into precipitation. It is suggested that organo-I is formed by reactions between HOI and organic matter derived from the ocean surface layer. This may then photolytically decompose to give iodide and the unidentified species. The data in this study show that iodine oxides are the least abundant species in rain, snow, and aerosols and therefore considerably more effort is required on aqueous phase iodine chemistry for a holistic understanding of the iodine cycle

    Shear stress fluctuations in the granular liquid and solid phases

    Full text link
    We report on experimentally observed shear stress fluctuations in both granular solid and fluid states, showing that they are non-Gaussian at low shear rates, reflecting the predominance of correlated structures (force chains) in the solidlike phase, which also exhibit finite rigidity to shear. Peaks in the rigidity and the stress distribution's skewness indicate that a change to the force-bearing mechanism occurs at the transition to fluid behaviour, which, it is shown, can be predicted from the behaviour of the stress at lower shear rates. In the fluid state stress is Gaussian distributed, suggesting that the central limit theorem holds. The fibre bundle model with random load sharing effectively reproduces the stress distribution at the yield point and also exhibits the exponential stress distribution anticipated from extant work on stress propagation in granular materials.Comment: 11 pages, 3 figures, latex. Replacement adds journal reference and addresses referee comment
    corecore