45,939 research outputs found

    The space-time structure of hard scattering processes

    Full text link
    Recent studies of exclusive electroproduction of vector mesons at JLab make it possible for the first time to play with two independent hard scales: the virtuality Q^2 of the photon, which sets the observation scale, and the momentum transfer t to the hadronic system, which sets the interaction scale. They reinforce the description of hard scattering processes in terms of few effective degrees of freedom relevant to the Jlab-Hermes energy range.Comment: 4 pages; 5 figure

    The X(3872) boson: Molecule or charmonium

    Full text link
    It has been argued that the mystery boson X(3872) is a molecule state consisting of primarily D0-D0*bar + D0bar-D*0. In contrast, apparent puzzles and potential difficulties have been pointed out for the charmonium assignment of X(3872). We examine several aspects of these alternatives by semiquantitative methods since quantitatively accurate results are often hard to reach on them. We find that some of the observed properties of X(3872), in particualr, the binding and the production rates are incompatible with the molecule interpretation. Despite puzzles and obstacles, X(3872) may fit more likely to the excited triplet P_1 charmonium than to the molecule after mixing of cc-bar with DD*-bar +Dbar-D* is taken into account. One simple experimental test is pointed out for distinguishing between a charmonium and an isospin-mixed molecule in the neutral B decay.Comment: A few sentences of comment are added. One minor rewording in the Introduction. Two trivial typos are correcte

    Development of the ARIES parachute system

    Get PDF
    The design and testing of a two-stage parachute system to recover a space telescope weighing up to 2000 pounds is described. The system consists of a 15-ft dia ribbon parachute reefed to 50% for 10 seconds and a 73-ft dia paraform or cross second stage reefed to 10% for 10 seconds. The results of eight drop tests and one operational rocket launched flight and recovery are presented. A successful operational recovery of a 1600-lb NASA space telescope was conducted. The payload was launched by a second stage Minuteman rocket to an altitude of about 300 miles above sea level

    From urban to national heat island: The effect of anthropogenic heat output on climate change in high population industrial countries

    Get PDF
    The project presented here sought to determine whether changes in anthropogenic thermal emission can have a measurable effect on temperature at the national level, taking Japan and Great Britain as type examples. Using energy consumption as a proxy for thermal emission, strong correlations (mean r2 = 0.90 and 0.89, respectively) are found between national equivalent heat output (HO) and temperature above background levels Δt averaged over 5‐ to 8‐yr periods between 1965 and 2013, as opposed to weaker correlations for CMIP5 model temperatures above background levels Δmt (mean r2 = 0.52 and 0.10). It is clear that the fluctuations in Δt are better explained by energy consumption than by present climate models, and that energy consumption can contribute to climate change at the national level on these timescales

    Inelastic final-state interaction

    Get PDF
    The final-state interaction in multichannel decay processes is sytematically studied with application to B decay in mind. Since the final-state inteaction is intrinsically interwoven with the decay interaction in this case, no simple phase theorem like "Watson's theorem" holds for experimentally observed final states. We first examine in detail the two-channel problem as a toy-model to clarify the issues and to remedy common mistakes made in earlier literature. Realistic multichannel problems are too challenging for quantitative analysis. To cope with mathematical complexity, we introduce a method of approximation that is applicable to the case where one prominant inelastic channel dominates over all others. We illustrate this approximation method in the amplitude of the decay B to pi K fed by the intermediate states of a charmed meson pair. Even with our approximation we need more accurate information of strong interactions than we have now. Nonethless we are able to obtain some insight in the issue and draw useful conclusions on general fearyres on the strong phases.Comment: The published version. One figure correcte

    Mean eigenvalues for simple, simply connected, compact Lie groups

    Full text link
    We determine for each of the simple, simply connected, compact and complex Lie groups SU(n), Spin(4n+2)(4n+2) and E6E_6 that particular region inside the unit disk in the complex plane which is filled by their mean eigenvalues. We give analytical parameterizations for the boundary curves of these so-called trace figures. The area enclosed by a trace figure turns out to be a rational multiple of π\pi in each case. We calculate also the length of the boundary curve and determine the radius of the largest circle that is contained in a trace figure. The discrete center of the corresponding compact complex Lie group shows up prominently in the form of cusp points of the trace figure placed symmetrically on the unit circle. For the exceptional Lie groups G2G_2, F4F_4 and E8E_8 with trivial center we determine the (negative) lower bound on their mean eigenvalues lying within the real interval [1,1][-1,1]. We find the rational boundary values -2/7, -3/13 and -1/31 for G2G_2, F4F_4 and E8E_8, respectively.Comment: 12 pages, 8 figure

    Estimations for the Single Diffractive production of the Higgs boson at the Tevatron and the LHC

    Full text link
    The single diffractive production of the standard model Higgs boson is computed using the diffractive factorization formalism, taking into account a parametrization for the Pomeron structure function provided by the H1 Collaboration. We compute the cross sections at next-to-leading order accuracy for the gluon fusion process, which includes QCD and electroweak corrections. The gap survival probability () is also introduced to account for the rescattering corrections due to spectator particles present in the interaction, and to this end we compare two different models for the survival factor. The diffractive ratios are predicted for proton-proton collisions at the Tevatron and the LHC for the Higgs boson mass of MHM_H = 120 GeV. Therefore, our results provide updated estimations for the diffractive ratios of the single diffractive production of the Higgs boson in the Tevatron and LHC kinematical regimes.Comment: 20 pages, 6 figures, 3 table

    Anomaly matching for the QCD string

    Full text link
    A criterion to be satisfied by a string theory of QCD is formulated in the ultraviolet regime. It arises from the trace anomaly of the QCD stress tensor computed using instantons. It is sensitive to asymptotic freedom. It appears to be related to the trace anomaly of the QCD string. Our current understanding of noncritical strings in physical dimensions is limited, but remarkably, a formal treatment of the bosonic string yields numerical agreement both in magnitude and sign for the gauge group SU(2).Comment: Latex file, 8 pages, COLO-HEP/313, AZPH-TH/93-1

    Weak multiplicativity for random quantum channels

    Full text link
    It is known that random quantum channels exhibit significant violations of multiplicativity of maximum output p-norms for any p>1. In this work, we show that a weaker variant of multiplicativity nevertheless holds for these channels. For any constant p>1, given a random quantum channel N (i.e. a channel whose Stinespring representation corresponds to a random subspace S), we show that with high probability the maximum output p-norm of n copies of N decays exponentially with n. The proof is based on relaxing the maximum output infinity-norm of N to the operator norm of the partial transpose of the projector onto S, then calculating upper bounds on this quantity using ideas from random matrix theory.Comment: 21 pages; v2: corrections and additional remark

    Mass corrections in string theory and lattice field theory

    Get PDF
    Kaluza-Klein compactifications of higher dimensional Yang-Mills theories contain a number of four dimensional scalars corresponding to the internal components of the gauge field. While at tree-level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1-loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK--modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius RR is much bigger than the scale of the UV completion (Rα,aR \gg \sqrt{\alpha'},a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2,4\mathcal N=2,4 Super Yang-Mills is highly suppressed due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.Comment: 27 page
    corecore