53 research outputs found

    Optimizing Content Caching and Recommendations with Context Information in Multi-Access Edge Computing

    Get PDF
    Recently, the coupling between content caching at the wireless network edge and video recommendation systems has shown promising results to optimize the cache hit and improve the user experience. However, the quality of the UE wireless link and the resource capabilities of the UE are aspects that impact user experience and that have been neglected in the literature. In this work, we present a resource-aware optimization model for the joint task of caching and recommending videos to mobile users that maximizes the cache hit ratio and the user QoE (concerning content preferences and video representations) under the constraints of UE capabilities and the availability of network resources by the time of the recommendation. We evaluate our proposed model using a video catalog derived from a real-world video content dataset and real-world video representations and compare the performance with a state-of-the-art caching and recommendation method unaware of computing and network resources. Results show that our approach increases user QoE by at least 68% and effective cache hit ratio by at least 14% in comparison with the other method

    Habitat selection in natural and human-modified landscapes by capybaras (Hydrochoerus hydrochaeris), an important host for Amblyomma sculptum ticks.

    Get PDF
    Human activities are changing landscape structure and function globally, affecting wildlife space use, and ultimately increasing human-wildlife conflicts and zoonotic disease spread. Capybaras (Hydrochoerus hydrochaeris) are linked to conflicts in human-modified landscapes (e.g. crop damage, vehicle collision), as well as the spread and amplification of Brazilian spotted fever (BSF), the most human-lethal tick-borne disease in the world. Even though it is essential to understand the link between capybaras, ticks and BSF, many knowledge gaps still exist regarding the effects of human disturbance in capybara space use. Here, we analyzed diurnal and nocturnal habitat selection strategies of capybaras across natural and human-modified landscapes using resource selection functions (RSF). Selection for forested habitats was higher across human-modified landscapes, mainly during day- periods, when compared to natural landscapes. Across natural landscapes, capybaras avoided forests during both day- and night periods. Water was consistently selected across both landscapes, during day- and nighttime. Distance to water was also the most important variable in predicting capybara habitat selection across natural landscapes. Capybaras showed slightly higher preferences for areas near grasses/shrubs across natural landscapes, and distance to grasses/shrubs was the most important variable in predicting capybara habitat selection across human-modified landscapes. Our results demonstrate human-driven variation in habitat selection strategies by capybaras. This behavioral adjustment across human-modified landscapes may be related to increases in A. sculptum density, ultimately affecting BSF

    Pulmonary Abnormalities in Mice with Paracoccidioidomycosis: A Sequential Study Comparing High Resolution Computed Tomography and Pathologic Findings

    Get PDF
    Paracoccidioidomycosis (PCM) is a fungal infection caused by the dimorphic fungus Paracoccidioides brasiliensis. It occurs preferentially in rural workers in whom the disease is severe and may cause incapacitating pulmonary sequelae. Assessment of disease progression and treatment outcome normally includes chest x-rays or CT studies. Existing experimental PCM models have focused on several aspects, but none has done a radiologic or image follow-up evaluation of pulmonary lesions considered as the fungus primary target. In this study, the lungs of mice infected with fungal conidia were studied sequentially during the chronic stage of their experimental mycosis by noninvasive high resolution medical computed tomography, and at time of sacrifice, also by histopathology to characterize pulmonary abnormalities. Three basic lung lesion patterns were revealed by both techniques: nodular-diffuse, confluent and pseudo-tumoral which were located mainly around the hilus thus accurately reflecting the situation in human patients. The experimental design of this study decreases the need to sacrifice a large number of animals, and serves to monitor treatment efficacy by means of a more rational approach to the study of human pulmonary diseases. The findings we are reporting open new avenues for experimental research, increase our understanding of the mycosis pathogenesis and consequently have repercussions in patients' care

    Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments

    Get PDF
    Over the last two decades, various experiments have measured muon densities in extensive air showers over several orders of magnitude in primary energy. While some experiments observed differences in the muon densities between simulated and experimentally measured air showers, others reported no discrepancies. We will present an update of the meta-analysis of muon measurements from nine air shower experiments, covering shower energies between a few PeV and tens of EeV and muon threshold energies from a few 100 MeV to about 10GeV. In order to compare measurements from different experiments, their energy scale was cross-calibrated and the experimental data has been compared using a universal reference scale based on air shower simulations. Above 10 PeV, we find a muon excess with respect to simulations for all hadronic interaction models, which is increasing with shower energy. For EPOS-LHC and QGSJet-II.04 the significance of the slope of the increase is analyzed in detail under different assumptions of the individual experimental uncertainties
    • 

    corecore