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Optimizing Content Caching and
Recommendations with Context Information in

Multi-Access Edge Computing
Ana Claudia B. L. Monção, Sand Luz Correa, Aline Carneiro Viana, and Kleber Vieira Cardoso

Abstract—Recently, the coupling between content caching at the wireless network edge and video recommendation systems has
shown promising results to optimize the cache hit and improve the user experience. However, the quality of the UE wireless link and
the resource capabilities of the UE are aspects that impact user experience and that have been neglected in the literature. In this work,
we present a resource-aware optimization model for the joint task of caching and recommending videos to mobile users that maximizes
the cache hit ratio and the user QoE (concerning content preferences and video representations) under the constraints of UE
capabilities and the availability of network resources by the time of the recommendation. We evaluate our proposed model using a
video catalog derived from a real-world video content dataset and real-world video representations and compare the performance with
a state-of-the-art caching and recommendation method unaware of computing and network resources. Results show that our approach
increases user QoE by at least 68% and effective cache hit ratio by at least 14% in comparison with the other method.

Index Terms—video caching, recommender systems, multi-access edge computing, quality of experience
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1 INTRODUCTION

A CCORDING to forecasts presented by Cisco, IP traffic
will increase more than three times by 2023, while

video will be 82% of all this traffic [1], with a large part
of such demand being generated by mobile devices to
access video streaming. In this context, it is essential to
adopt solutions that take into consideration the quality of
experience observed by users and also the availability of
resources in the cache, the users’ devices, and the network.
Recently, the joint use of content caching at the wireless
network edge and recommendation systems have exhibited
promising results [2], [3].

Content caching at the network edge is not new. Indeed,
this idea was introduced by Content Delivery Networks
(CDNs) more than 20 years ago. The Multi-access Edge
Computing (MEC) paradigm [4], however, introduces some
new features to this context. First, MEC provides the op-
portunity for mobile network providers to offer computing
resources at the network edge, which may be also available
to service providers. Second, MEC is not limited to offering
the storage capacity and basic processing of classic CDNs,
it can provide advanced processing, similar to those found
in cloud systems, close to end-users [5]. Finally, the MEC
platform can provide network status information (e.g., wire-
less channel conditions, traffic patterns, and user mobility
patterns), which can be used to offer better services for
users [6]. Thus, MEC is designed not only to allow the exe-
cution of traditional services such as video caching, but also
new advanced services such as contextualized content, fine-
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grained recommendation, virtual/augmented/mixed real-
ity, autonomous cars, and industrial automation.

To serve different services and applications, mobile net-
work providers need to deploy or integrate MEC resources
in different parts of their networks, such as collocated with
the Base Station (BS), collocated with some device of the
Radio Access Network (RAN), or collocated with the Core
Network (CN) functions (i.e., in the same data center) [5],
[7], [8]. Fig. 1 illustrates the last approach (i.e., MEC col-
located with the CN functions), which is satisfactory for
video streaming services (e.g., Netflix, Hulu, YouTube). In
general, the latency from the users until the CN is negligible
for video streaming services, and the main bottleneck (i.e.,
Internet access) can be avoided if the content is cached.

On the other hand, recommendation systems, whose
goal is to recommend content that matches the preferences
of individual users, have become fundamental components
of content delivery services. As an example, Netflix has
reported that 80% of the hours streamed by the company
comes from recommendations made by its system [9]. This
fact illustrates how recommendation systems influence user
accesses to content and, thus, they can be employed to
induce access patterns that improve the cache performance.
In [3], the authors elaborate on this idea and present an
optimization model, denoted Joint Caching and Recommen-
dation Problem (JCRP). JCRP combines caching and video
content recommendations to maximize the cache hit ratio,
while minimally affecting user preferences. The recommen-
dation system is used to shape the user demand towards
content that can be shared by multiple users, resulting in an
improved cache hit ratio and also user quality of experience
(QoE).

Nevertheless, caching and recommending popular con-
tent at the network edge is not enough to ensure the user
QoE. Context factors such as the capabilities of the user
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Fig. 1. Reference scenario for the system model.

equipment (UE) to reproduce the video and the quality of its
wireless link may also affect the user satisfaction [10]. Thus,
videos with resolutions that the user mobile device (UE)
cannot reproduce should not be among her recommenda-
tions, even if the content is of her interest. Similarly, videos
encoded with representations that require more throughput
than the present user wireless link capacity should not be
included in the user recommendations. Therefore, informa-
tion on the UE capabilities and the quality of the wireless
link, by the time of the video recommendation, is important
to provide a better service to users. Despite these facts, as
far as we know, no previous work has tackled the problem
of caching and recommending videos in mobile networks
taking into account content preferences and the availability
of the computing resources in the UE and the quality of its
wireless link.

In this work we propose an optimization model, denoted
Resource-Aware Video Recommendation (RAViR), for the joint
task of caching and recommending videos to mobile users,
taking into consideration content preferences and informa-
tion on the availability of computing and network resources
(provided by the MEC platform) by the time of the video
recommendation. Consider, for example, a streaming service
composed of a video cache service deployed in the CN
and serving mobile users with different UE capabilities and
under different wireless link conditions, as illustrated in
Fig. 1. The general idea is that the recommendation system
of the streaming service should recommend to individual
users videos that i) match properly their content preferences;
ii) provide the best QoE according to the UE capabilities
and the quality of the wireless link by the time of the
recommendation; and iii) have the potential to be demanded
from multiple users.

This paper advances the state-of-the-art in the interplay
between caching and recommendation systems by making
the following contributions:

• We formulate and solve an optimization problem for
the joint task of caching and recommending videos
to mobile users, considering content preferences and
the availability of computing and network resources.
The objective of RAViR is to recommend videos to
users that maximize the cache hit ratio and the user

QoE (concerning content preferences and video rep-
resentations) under the constraints of UE capabilities
and the availability of network resources by the time
of the recommendation.

• We provide an extensive evaluation of RAViR using
a real dataset from the MovieLens project [11] and
compare the obtained results with different variants
of the JCRP [3]. Results show that RAViR increases
user QoE by at least 68% and effective cache hit ratio
by at least 14% in comparison with the JCRP variants.

• We introduce a new metric to assess the QoE of
mobile users that consume streaming services in the
era of MEC. Our QoE metric is designed to capture
the capabilities of the UE as well as the effect of the
availability of computing and network resources on
the user experience.

The remainder of this paper is organized as follows. In
Section 2, we discuss the related work. The system model
and the problem formulation are presented in Sections 3
and 4, respectively. We evaluate the performance of RAViR
in Section 5. Section 6 concludes this paper and presents
future directions.

2 RELATED WORK

Caching is a classical subject in computer science and has
been well studied in computer networks [12], [13]. How-
ever, the expected wide adoption of MEC in 5G networks
is motivating the research community to revisit the topic
under a refreshed perspective. This section briefly presents
an overview of related research on caching and recommen-
dation systems as well as QoE in video streaming services
in the context of 5G networks.

2.1 Caching and Recommendation Systems
Few works in the literature have based caching decisions on
personalized recommendations issued by recommendation
systems [3], [14], [15], [16], [17]. From this group, the first
four deals with video content, and only [16] and [3] tackled
the problem in the context of the network edge. The authors
in [16] introduce the concept of “soft cache hits” in the con-
text of entertainment-oriented content consumption on the
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Internet. The idea is to recommend similar cached content
to mobile users that request videos which are not cached at
the base stations. Since the majority of video content on the
Internet is entertainment-oriented, the authors argue that
users are likely to accept the recommendations.

The authors of [3] evolve the initial idea introduced
in [16] and propose a model to tackle the Joint Caching and
Recommendation Problem (JCRP) in small cell networks.
In JCRP, the recommendation system is used not only as
a predictor of video content demand but also as a demand-
shaping tool to enhance cache performance. To this end, the
JCRP model issues recommendations that may not neces-
sarily rank top in the inferred user content preferences but
still score high in them. By bounding the distortion that
such recommendations introduce to the original user con-
tent preferences, the JCRP model controllably guides user
demand toward content that attracts the preference from
multiple users. The authors show that using recommenda-
tion systems as a traffic engineering tool brings relevant
gains in cache performance without significantly degrading
the user preferences. However, in [3] user preferences are
defined only in terms of content. Video resolution and the
computing and network resources available at the user side
to play the video are not take into consideration. As a result,
JCRP may recommend videos which representations are not
suitable for the available user resources. In addition, al-
though the cache is assumed to be collocated with multiple
BSs, the authors do not describe how this distributed cache
is managed, which is a non-trivial problem. Similar to [3], in
our work, we also use recommendation systems as a traffic
engineering mechanism to enhance the cache hit. However,
different from [3], in our work, user preferences comprise
video content explicitly and video representation implicitly.
The latter is obtained from UE capabilities and from the
prediction on the network resources available to the UE,
which is provided by the MEC platform by the time of the
recommendation. Also, different from [3], we assume that
the cache is collocated with the CN.

2.2 QoE in Video Streaming Services

The work in [3] assesses the user QoE using only the cache
hit ratio. However, the cache hit ratio is not enough to
measure if the video content is being delivered to the users
with the appropriate quality of service (QoS). Indeed, many
papers have investigated how to measure or predict the
QoE of mobile users when they consume video streaming
services. For example, a work from Netflix [18] proposes
different ways to assess the user QoE by combining images
and mobility metrics. Most of these metrics compare differ-
ent video encodings with evaluations issued by the users.
In [19], the authors propose a low-complexity network met-
ric to derive the QoE perceived by users of UHD video flows
in 5G networks. This metric, denoted Congestion Index (CI),
represents the ability of the network to successfully deliver
video stream based on the maximum available bandwidth
on the path from the server to the user. The QoE is then
obtained using a regression technique that correlates the CIs
(resulting from variable video bitrates and available band-
width) with subjective user assessments. Indeed, most of the
QoE metrics for video streaming services proposed in the

literature are based solely on video transmission parameters
(e.g., video bitrates and network throughput). Differently, in
our work, we first propose a new Congestion Index (CI) that
assesses the ability of the network to deliver video stream
when the video comes from the edge cache or the remote
cloud. In the last case, the CI is higher since the UE faces
competition for the bottleneck link to access the Internet. We
then define a new QoE metric that accounts for the effect of
the UE capabilities, the CI, and over/underestimations of
the network conditions on the user quality of experience.

3 SYSTEM MODEL

In this work, we consider a mobile network with a MEC
system as illustrated in Fig. 1. Multiple BSs, in different
locations, offer connectivity to a set of mobile users, denoted
by U . These users consume video streaming services from
a video catalog, represented by I . Since video streaming
services are adequately provisioned by cache stored in the
core network, in this work, we assume that a cache service
is deployed in MEC hosts at the CN. The cache service has
a limited total storage capacity, represented by C , which is
measured in normalized file size units. At a given instant
of time, the cache stores a subset I ′ of the entire catalog.
Servers in remote data centers host copies of the entire
catalog.

Let V denote the set of video content (e.g., The Godfa-
ther, The Godfather: Part II, Schindler’s List, Pulp Fiction,
etc.) available in the catalog I and let R be the set of all
possible video representations, where a video representa-
tion r ∈ R is composed of bitrate and resolution, i.e.,
(Btr(r),Res(r)). Each video content v ∈ V is available into a
subsetRv ⊆ R of representations. We use the notation vr to
denote a video content v ∈ V encoded into a representation
r ∈ Rv , so that vr has an encoding bitrate Btr(r), a
corresponding video resolution Res(r), and a size Size(vr).
Thus, the catalog I is composed of video content with their
representations, i.e., I = {vr|v ∈ V, r ∈ Rv}.

Next, we describe how we capture user preferences on
content, computing and network resources, and the impact
of recommendations on user choices in our model. Table 1
summarizes the notation used in this work.

3.1 Users and Computing and Network Resources

We assume that each user u ∈ U consumes video streaming
services through a mobile device (UE) connected to a base
station. Each mobile device presents different capabilities
(e.g., processor type, graphic card, memory, and screen
size) and, consequently, may support a different maximum
resolution for video playback, denoted by ResUE(u).

At any point in time, each user u ∈ U receives a video
streaming through her wireless link. The quality of the UE
wireless link may vary significantly over time due to several
factors, including mobility and signal impairments. We con-
sider that the quality of the wireless link can be periodically
obtained by the video streaming service through the MEC
Radio Network Information Service (RNIS) [6]. This quality
is reported as the Channel Quality Indicator (CQI), one
of the key parameters in the Channel State Information
(CSI) [20]. The base station uses the CQI parameter to
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TABLE 1
Notation Table

Notation Description
C Total cache storage capacity
N Number of recommendations per user
U Set of users
V Set of video content
R Set of representations (bitrate, resolution)
Rv Set of representations for a video content v
I Set of all video content with their representations
I′ Cache content
T Set of video thematic categories
Q Set of possible Channel Quality Indicator (CQI) values
vr Video content v encoded in representation r
Size(vr) Size of video content vr
Btr(r) Encoding bitrate of video representation r
Res(r) Video resolution of video representation r
ResUE(u) Maximum resolution supported by the UE of user u
CQI(u) Channel Quality Indicator of the UE wireless link of

user u
BtrAvl(q) Bitrate associated with CQI value q
ResCQI(q) Video representation suitable to the CQI value q
fv Thematic categories vector of the video content v
fu Thematic preferences vector of the user u
Sim(u, v) Similarity between user preference u and video con-

tent v
PCont
u Video content preference distribution of user u

PRes
u Video representation preference distribution of user u

PPref
u Preference distribution of user u

PRec
u Probability distribution due to recommendation

PReq
u Content item request probability distribution of user u

(recommended items)
PReq∼
u Content item request probability distribution of user u

(non-recommended items)
Best(u) The most suitable video representation to user u
Sat(u, r) Satisfaction of user u with a video representation r
wu Weight that user u gives for a recommendation
Wu Recommendation window of user u
Ku Size of recommendation window Wu

Tol(u) Distortion tolerance on recommendation accepted by
user u

determine the appropriate Modulation and Coding Scheme
(MCS) between itself and the UE. The CQI also influences
the transport block size (TBS), which is the size of a data
unit, i.e., a transport block from the MAC layer given to
the PHY layer. With the MCS and TBS information, the UE
wireless link capacity (i.e., the bitrate) can be determined.

Let denote by Q the set of all possible CQI values. Each
q ∈ Q is associated with a given pair MCS and TBS. Thus,
it is possible to determine the UE wireless link capacity (in
bitrate) for each q ∈ Q [21]. We represent such UE wireless
link capacity by BtrAvl(q). Also, we denote by CQI(u) ∈
Q the predicted average quality of the UE wireless link of
user u by the time of the recommendation.

3.2 Content Preferences

We assume that a video content is categorized by one
or more thematic categories (e.g., Animation, Adventure,
Romance, Comedy, etc.). Formally, let T be the set of all
possible thematic categories. Each video content v ∈ V is
associated with a feature vector fv whose j-th element fv(j),
j ∈ T , represents the adherence level of category j to video
content v. This adherence level is normalized and assumes
values in the range [0,1], so that

∑
j∈T fv(j) = 1,∀v ∈ V .

Similarly, each user u ∈ U is associated with a fea-
ture vector fu, where each element fu(j), j ∈ T , repre-
sents the interest of user u in thematic category j. This
interest is estimated based on the video content watched
and evaluated by the user, and is also normalized so that∑

j∈T fu(j) = 1,∀u ∈ U .
Given the feature vectors fv and fu, we can estimate

the interest of user u in the video content v, denoted by
Sim(u, v), using the cosine similarity [3], i.e.,

Sim(u, v) =

∑
j∈T fu(j) · fv(j)√∑

j∈T fu(j) ·
√∑

j∈T fv(j)
. (1)

Thus, for each user u ∈ U and each video content v ∈ V
we can compute the probability of user u be interested in
the video content v as:

PCont
u (v) =

Sim(u, v)∑
zs∈I Sim(u, z)

, (2)

where z ∈ V and s ∈ R are, respectively, the content
and representation associated with video zs ∈ I , and∑

vr∈I P
Cont
u (v) = 1. Indeed, PCont

u (v),∀vr ∈ I represents
the content preference distribution of user u over the catalog
I . We denote this distribution by PCont

u .
The demand for video content is time-varying. Usually,

it grows for some finite time after the video content becomes
available in the catalog, and then it gradually fades out [22],
[23]. Similar to other works [3], [24], [25], in this paper, we
assume that users’ content request patterns change slowly
over time, usually in the order of a few hours within a day.
Thus, content demand predictions, recommendations, and
caching decisions are made at this time scale.

3.3 Representation Preferences

In addition to content interest, the quality in which a video
is delivered affects the user experience positively or nega-
tively. Thus, videos with resolutions that the user mobile
device can not reproduce or videos encoded with represen-
tations that require more capacity than the one available in
the UE wireless link should not be among her preferences,
even with interesting content.

Formally, let CQI(u) ∈ Q be the predicted average
quality of the UE wireless link by the time the system
has to issue a recommendation to user u. Since the bitrate
BtrAvl(CQI(u)) is known for each q ∈ Q, we can compute
the most suitable video representation ResCQI(CQI(u))
that can be transmitted under this wireless link condition.
The best video representation for user u by the time of the
recommendation is given by:

Best(u) = min(ResUE(u), ResCQI(CQI(u))). (3)

To capture the relevance of a given video representation
r ∈ R to user u by the time of the recommendation, we de-
fine a representation relevance factor, denoted by Sat(u, r),
whose values varies in the range [0,1] and is given by:
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Sat(u, r) =


0, Res(r) > Best(u)

1, Res(r) = Best(u)

1− (Best(u)−Res(r))
Best(u) , Res(r) < Best(u).

(4)
The rationale behind Equation (4) is that the most appro-

priate video representation for user u, given ResUE(u) and
ResCQI(CQI(u)), achieves the relevance factor of 1, while
the other representations show a progressive reduction in
the user interest. Representations that are not appropriate to
the user mobile device will score 0.

By applying the representation relevance factor Sat(u, r)
to each video representation r available in the catalog I , we
obtain a new distribution, denoted by PRes

u , that describes
the user preferences on video representations by the time of
the recommendation, i.e.,

PRes
u (r) =

Sat(u, r)∑
zs∈I Sat(u, s)

, (5)

where z ∈ V and s ∈ R are, respectively, the content
and representation associated with video zs ∈ I , and∑

vr∈I P
Res
u (r) = 1. Thus, on the user side, we distin-

guish between video content preferences (PCont
u ) and video

representation preferences (PRes
u ). We then define a new

distribution, called user preferences (PPref
u ) as follows.

Definition 3.1. The user preference distribution, denoted by
PPref
u , is a combination of the user content preference dis-

tribution (PCont
u ) and the video representation preferences

distribution (PRes
u ) and captures the joint preferences of

user u on a video content v ∈ V and a video representation
r ∈ Rv by the time of the recommendation, for all items in
the catalog, i.e.,

PPref
u (vr) =

PCont
u (v) · PRes

u (r)∑
zs∈I P

Cont
u (z) · PRes

u (s)
, (6)

where z ∈ V and s ∈ R are, respectively, the content
and representation associated with video zs ∈ I , and∑

vr∈I P
Pref
u (vr) = 1. Equation (6) comprises the pref-

erences of user u in terms of video content and video
representation. The latter, on the other hand, depends on
computing and network resources, i.e., the user mobile
device capabilities and the UE wireless link condition by
the time of the recommendation. Thus, the higher the value
of PPref

u (vr), the better the user experience.

3.4 Impact of Recommendations
The literature shows that recommendation systems have a
high impact on user choices. In general, recommendation
systems increase requests for recommended items while
proportionally decrease the demand for other items in the
catalog [26]. There is also strong evidence that the number
of recommended items and their respective positions on the
recommendation list influence user choices [14]. Thus, the
content that users eventually request also depend on the
recommendations issued to them.

To capture the impact of recommendations on user
choices, we assume a new probability distribution, denoted
by PRec

u , over the set of video content (V). Similar to [3], we

assume that this distribution equally boosts all items in the
recommendation list, as defined in the following.

Definition 3.2. Let Vu ⊆ V be the set of content recom-
mended to user u, where Vu is composed of the top N
(N = |Vu|) content in u’s content preference distribution
PCont
u . The probability distribution due to recommenda-

tions PRec
u is given by:

PRec
u (v) = 1/N, ∀v ∈ Vu. (7)

The intuition behind Equation (7) is that the shorter
the recommendation list, the greater its influence on the
user choice. This is especially true for mobile users, where
devices with small screens limit the amount information
exhibited at once. Thus, recommendation systems modu-
late the original user video preferences PPref

u to yield the
ultimate video request distribution of user u. The latter is
defined as follows.

Definition 3.3. Let wu be the weight that expresses the
importance user u gives to recommendations. The ultimate
video request distribution of user u over the catalog I ,
denoted by PReq

u , is a function of the user preference dis-
tribution by the time of the recommendation (PPref

u ) and
the probability distribution due to recommendations (PRec

u )
and is given by

PReq
u (vr) = wu · PRec

u (v) + (1− wu) · PPref
u (vr), (8)

for the videos that are recommended to user u, i.e., ∀vr ∈
I | v ∈ Vu, and by

PReq∼
u (vr) = (1− wu) · PPref

u (vr), (9)

for the videos that are not recommended to user u, i.e., ∀vr ∈
I | v /∈ Vu.

3.5 Recommendation Systems as a Traffic Engineering
Tool

The authors in [3] use recommendation systems to modulate
user preferences and, at the same time, optimize content
cache policies. To this end, instead of issuing recommenda-
tions for the top N items on the user preference distribution
PPref
u , as usually expected for a recommendation system,

the system selects N items among the ones residing within
a recommendation window Wu. This window is defined by
the top Ku items of PPref

u , where Ku > N . Indeed, Ku is
defined according to a distortion tolerance Tol(u) ∈ [0, 1),
which controllably bounds the distortion that recommenda-
tions introduce to the original user preferences.

Assuming a list Wu, Wu ⊆ I , with Ku items, the
last N items will be recommended in the worst case, i.e.,
those ranked in positions Ku −N + 1,Ku −N + 2, ..,Ku.
Denoting by i an item in Wu and by posu(i) the position of
i in Wu, the worst case distortion is defined as:

∆u(Ku, N) = 1−
∑

i:posu(i)∈[Ku−N+1,Ku]
PPref
u (i)∑

i:posu(i)∈[1,N ] P
Pref
u (i)

. (10)
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The cardinality Ku of the expanded recommendation
window Wu is given by:

Ku = max{k|∆u(Ku, N) ≤ Tol(u)}. (11)

In this work, we use the approach proposed in [3] to
modulate user preferences and to optimize content cache
policies. However, the definition of preferences in [3] does
not account for video representations, and each item i ∈ I
is only described by its content (i.e., i = v). As a conse-
quence, PPref

u = PCont
u . Different from [3], the definition

of preferences in our work takes into account video content
(v) and representation (r). Thus, each item i ∈ I is a video
content encoded into a certain representation (i.e., i = vr)
and user preferences are defined in terms of both content
and representation, as stated in Equation (6).

4 CACHE POLICY AND RESOURCE-AWARE REC-
OMMENDATION SYSTEM

In this section, we define a new joint cache and recommen-
dation problem, called Resource-Aware Video Recommendation
(RAViR), which takes into consideration content preferences,
information on the availability of computing and network
resources by the time of the video recommendation, and the
cache hit ratio.

Consider a cache service running in MEC hosts at the
CN with total storage capacity C ; the catalog I composed
of video content, their representations, and their lengths
Size(vr), vr ∈ I ; the set U of users with their distributions
of preferences (PPref

u , u ∈ U ), recommendation (PRec
u ,

u ∈ U ) and request (PReq
u , u ∈ U ) given by Equations (6),

(7), and (8) and (9), respectively; and user recommendation
windows Wu ⊆ I with Ku videos, where Ku is given
by Equation (11) and u ∈ U . The goal of RAViR is to
recommend, for every user u ∈ U , N videos from the
recommendation window Wu, so that the recommended
videos maximize the cache hit ratio and the user experience.

Formally, let {yvr}, vr ∈ I , be a set of binary decision
variables, so that yvr = 1 if video vr is in cache and
yvr = 0, otherwise. Let {xu,vr}, u ∈ U , vr ∈ I , be another
set of binary decision variables, so that xu,vr = 1 if vr
is recommended to user u and xu,vr = 0, otherwise. We
formulate the RAViR problem as follows:

max
y,x

∑
u∈U

∑
vr∈Wu

yvr (xu,vr
·PReq

u (vr)+(1−xu,vr )·PReq∼
u (vr))

(12)
subject to:∑

vr∈I
yvr · Size(vr) ≤ C (13)

∑
vr∈Wu

xu,vr
= N, ∀u ∈ U (14)

PRes
u (vr) > 0,∀u ∈ U ,∀vr ∈Wu (15)

yvr , xu,vr
∈ {0, 1},∀u ∈ U ,∀vr ∈Wu. (16)

Equation (12) maximizes the cache hit ratio and the
user experience using each user preference list Wu. This
list comprises preferences on content (explicitly) and reso-
lution (implicitly). Equation (13) reflects the cache storage

capacity constraint, while Equation (14) ensures that exactly
N videos are recommended to every user. Finally, Equation
(15) ensures that the recommended video does not exceed
the computing and network resources to every user.

5 EXPERIMENTAL EVALUATION

This section evaluates the performance of RAViR using a
video catalog derived from real-world data. In the follow-
ing, we first describe the methodology we use to obtain
the video catalog (Section 5.1). Then, we i) detail how we
obtain information on computing and network resources
related to the user mobile devices (Section 5.2), ii) present
the baseline algorithms used in the evaluation (Section 5.3),
and iii) introduce the metrics used to assess the performance
of the evaluated methods (Section 5.4). Finally, we discuss
the obtained results (Sections 5.5 and 5.6).

5.1 Dataset and Pre-processing

In order to create the video catalog, we use the MovieLens
project dataset [11] to obtain video content and user content
preferences. The MovieLens dataset is a collection of 5-star
movie ratings collected from an online movie recommenda-
tion service called MovieLens. This dataset has been used
in related work on caching and recommendations [3], [27]
and consists of approximately 100,000 user ratings (ranging
from 0 to 5) applied to a content catalog of 9,742 movies
(|V| = 9, 742), characterized by 20 thematic categories
(|T | = 20), and a community of 610 users (|U| = 610).

Since the MovieLens dataset does not provide different
video representations for content, we use video qualities
supported by YouTube to derive a set of video representa-
tions. More specifically, we consider 6 video resolutions, and
their corresponding YouTube recommended bitrates [21],
presented in Table 2, to compose the set of video represen-
tations (|R| = 6).

TABLE 2
Video representations used in our evaluation

Type Name Video Representation
Type(r) (Btr(r), Res(r))

1 medium (1.5Mbps,360px)
2 large (4Mbps,480px)
3 hd720 (7.5Mbps,720px)
4 hd1080 (12Mbps,1080px)
5 hd1440 (24Mbps,1440px)
6 hd2160 (53Mbps,2160px)

We then combine this video representation set (R) and
the MovieLens dataset (V) to generate the final video catalog
I . For each video content v ∈ V , we generate a number nv

that indicates the amount of representations of v available
in the catalog I , with nv sampled from a Uniform distri-
bution U(1, 6). Given v and nv , we insert in the catalog
I all videos vr with content v encoded in representation
r, so that Type(r) ∈ {1, . . . , nv} and Type(r) denotes the
type associated to representation r (Table 2). This approach
ensures that every video content v ∈ V is available in a
subset of representationsRv with increasing video qualities,
starting from the lowest one. The size of the video (Size(vr),
vr ∈ I) is a function of its duration and representation,
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employing a normalized scale compatible with the cache
storage. After combining the MovieLens dataset (V) and the
set of representations (R), we end up with a video catalog
of approximately 35,000 items (|I| = 35, 000).

We also use the MovieLens dataset (V) to compute the
feature vectors fv and fu and then infer the user content
preference PCont

u . To this end, we use the same approach
employed in [3] and rely on the information that a user
rates a specific content, rather than the actual rating she
assigned to it. More specifically, if a content v ∈ V is
classified into t categories, then the positions corresponding
to such categories in the video feature vector fv are set
to 1/t and the remaining ones to zero. To illustrate, let
suppose that content v is described by categories “Action”
and “Comedy”. We set fv(j) = 0.5 for those j values
corresponding to categories “Action” and “Comedy”, and
fv(j) = 0 to the other categories. Denote by Au ⊆ V the
set of video content rated by user u ∈ U . We estimate the
element fu(j), j ∈ T , of user feature vector fu as:

fu(j) =

∑
v∈Au

fv(j)∑
j∈T

∑
v∈Au

fv(j)
. (17)

Once the feature vectors fv and fu are computed for
every v ∈ V and for every u ∈ U , respectively, we use
Equations (1) and (2) to estimate PCont

u for every u ∈ U .

5.2 Computing and Network Resources and Ultimate
User Request
As part of the input to our model, we need to provide
computing capabilities related to the user mobile device
and the prediction of the average quality of the UE wireless
link by the time of the recommendation. To represent the
UE computing capabilities, we assign the maximum sup-
ported resolution (ResUE(u), u ∈ U ) by taking a random
value from a Uniform distribution U(1, 6). This ensures
that ResUE(u) = Res(r) for some video representation r
described in Table 2. Similar to the previous random choices
employed, this simple approach has the sole purpose of
exercise the model without bias. Any statistical knowledge
about UE computing capabilities or video representations
could influence the specific values observed in the evalua-
tion, but not the general trends.

For the quality of the UE wireless link (CQI(u) ∈ Q,
u ∈ U ), values of signal strength-related metrics (e.g., the
Arbitrary Strength Unit - ASU) can be grouped into CQI
values, e.g., |Q| = 15, as illustrated in Table 3 (column
1) [21]. Given that each CQI value q ∈ Q is associated with
an MCS and a TBS, there is a mapping from CQI values to
bitrates, also illustrated in Table 3 (column 4). Combining
the information presented in Tables 2 and 3, it is possible
to determine the best video representation for a certain CQI
value. This information is shown on the right side of Table 3
(column 5). Again, in order to avoid bias, we obtain the
predicted average quality of the UE wireless link (CQI(u))
by sampling from a Uniform distribution U(1, 15) (i.e., the
interval presented in column 1 of Table 3).

Having ResUE(u) and CQI(u), u ∈ U , and using Equa-
tion (3), we can compute the best representation for user u
by the time of the recommendation. Also, using Equations
(4), (5), and (6), we can estimate PPref

u , ∀u ∈ U . We compute

PRec
u , ∀u ∈ U , by applying Equation (7) for the top N

video content in PCont
u . In our evaluation, we experiment

with N = 3 and N = 5. Given PRec
u and PPref

u , ∀u ∈ U ,
we compute the ultimate video request distribution (PReq

u

and PReq∼
u , ∀u ∈ U ) using Equations (8) and (9). Aligned

with [3], we sample the user recommendation weight (wu,
∀u ∈ U ), from a Uniform distribution U(0.5, 0.7).

TABLE 3
Mapping between CQI values, bitrates, and video representations

CQI MCS TBS Bitrate Video Representation
q BtrAvl(q) ResCqi(q)

Value Index (bits) (Mbps) (Mbps,px)
1 0 1384 2.768 (1.5Mbps,360px)
2 0 1384 2.768 (1.5Mbps,360px)
3 2 2216 4.432 (4Mbps,480px)
4 4 3624 7.548 (7.5Mbps,720px)
5 6 5160 10.320 (7.5Mbps,720px)
6 8 6968 13.936 (12Mbps,1080px)
7 11 8760 17.520 (12Mbps,1080px)
8 13 11448 22.896 (12Mbps,1080px)
9 16 15264 30.528 (24Mbps,1440px)
10 18 16416 32.832 (24Mbps,1440px)
11 21 21384 42.768 (24Mbps,1440px)
12 23 25456 50.912 (24Mbps,1440px)
13 25 28336 56.672 (53Mbps,2160px)
14 27 31704 63.408 (53Mbps,2160px)
15 27 31704 63.408 (53Mbps,2160px)

5.3 Baseline Methods
We compare RAViR against JCRP. However, user preferences
in JCRP are based on video content and do not account
for video representation. Thus, to provide a fair comparison
between the two methods, we adapt the JCRP model to limit
the video representations considered during the generation
of the user recommendation window Wu. This adaptation
does not affect the output issued by the method since, for
JCRP, videos with different representations, but the same
content, have the same value for the user. This approach
leads us to three variants of the original method:

• JCRP-L: given a set of videos with the same content,
this variant selects the representation with the lowest
resolution to be included in Wu.

• JCRP-M: given a set of videos with the same content,
this variant selects the representation with medium
resolution to be included in Wu.

• JCRP-H: given a set of videos with the same content,
this variant selects the representation with the high-
est resolution to be included in Wu.

5.4 Evaluation Metrics
Our evaluation is focused on two metrics: the user QoE and
the cache hit ratio (CHR). In the following, we describe these
metrics in detail.

The QoE metric estimates the user’s satisfaction when
watching a video. In our work, this metric is computed for
each video recommended to the user. The QoE is high when
the recommended video is in cache and its representation
matches the computing and network resources available to
the UE. More specifically, the following factors affect the
user QoE negatively:
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• F1: The recommended video is not in cache. In this
case, the video will be delivered by the cloud server,
and the UE has to face competition for the bottleneck
link to access the Internet.

• F2: The recommended video requires a higher bitrate
than that available on the UE wireless link. In this
case, the video reproduction is subjected to delays
and stalls.

• F3: The recommended video requires a higher res-
olution than the one supported by the user mobile
device. In this case, the UE is not be able to reproduce
the video.

• F4: The recommended video requires a lower resolu-
tion than that supported by the available resources
(UE computing capabilities and wireless link). In
this case, the available resources are not being used
properly and the user is receiving a video with lower
quality than her device is able to present.

In [19], the authors propose a correlation between the
user QoE and the Congestion Index (CI), a metric that
represents the ability of the network to successfully deliver
a video stream based on the maximum available bandwidth
on the path from the server to the user. This correlation is
shown in Equation (18):

QoE =
5.082√
CI
− 0.891, CI > 0, (18)

where CI is the ratio of the maximum required bandwidth
for the stream divided by the available network bandwidth.
The authors in [19] obtain this equation using a regression
technique over subjective user assessments.

In our work, the recommended video can be delivered
by the MEC hosts or by the cloud servers, depending on
whether the video is in the cache or not. To capture this
situation, we define an Internet Congestion Index metric,
denoted by ICI , that represents the current state of the
network path between the MEC hosts and the cloud servers.
If the video is in the cache, no access to the cloud servers is
needed, and ICI = 0. Otherwise, ICI > 0 and its value
will depend on the utilization of the links connecting the
two storage places (i.e., MEC and cloud). We then propose a
new CI ratio to account for the ICI ratio as follows. Given
a video vr ∈ I recommended to user u ∈ U , we compute
the CI for such recommendation as:

CI(u, r) =
Btr(r)

BtrAvl(CQI(u))
∗ (1 + ICI), (19)

where Btr(r) and BtrAvl(CQI(u)) represent, respectively,
the maximum required bitrate for the stream and the bitrate
available in the UE wireless link.

Equations (18) and (19) work well to capture the user
QoE concerning video transmission, e.g., the situations de-
scribed in F1 and F2. However, it fails to capture the QoE
in other situations. For instance, for situation F4, these
equations return a high user QoE, when it is expected
otherwise. To capture the QoE of user u ∈ U when receiving
a recommended video vr ∈ I and taking into account all
situations described from F1 to F4, we propose a new QoE
metric, based on Equation (18), as follows:

QoE(u, vr) =


0, r > Best(u)

5.082√
CI(u,r)

− 0.891, r = Best(u)

5.082√
1/CI(u,r)

− 0.891, r < Best(u),

(20)

where CI is given by Equation (19). The first part of Equa-
tion (20) captures the user QoE in case of F3 happens; the
second part of the equation applies for F1 and F2. Finally,
the third part deals with F4.

For the cache hit ratio (CHR), we adapt the metric
employed in [3], which is based on the probability of cached
videos being requested. In [3] and in most literature on
video caching, a recommendation is considered a hit if the
video content is in the cache. These works either assume that
all representations (of the content) are in the cache, or that
the highest representation is cached and transcoding tech-
niques will be in charge of transforming such representation
to the one expected by the user. Both strategies, however,
rapidly consume the available cache storage. Indeed, Netflix
has reported achieving the same caching efficiency with 50%
less storage by caching videos at a file (representation) level
instead of at a title (content) level [28]. Thus, in this work,
we assume that cache policies are defined at the granularity
of files (representations) and consider a cache hit only if the
cached file matches the content and representation expected
by the user (according to its computing and network re-
sources). To reflect this situation, we adapt the CHR metric
by introducing a binary variable zu,vr

that assumes the
value 1 only when the cached video matches perfectly with
the content and representation expected by the user, and 0
otherwise. Thus, our cache hit ratio is given by:

CHR =

∑
u∈U

∑
vr∈I′ zu,vr · P

Req
u (vr)∑

u∈U
∑

vr∈I P
Req
u (vr)

. (21)

5.5 Evaluating Content, UE Capabilities and Network
Conditions

In this section, we evaluate the performance of RAViR and
the JCRP variants considering the entire input needed for
the model, i.e., video content, user mobile device capabil-
ities, and the quality of the UE communication (including
both, UE wireless link and Internet access). We first present
the results related to the QoE, considering a fixed ICI
(Section 5.5.1). Then, we present the results related to the
CHR (Section 5.5.2). Finally, we present an analysis on the
impact of the ICI on the QoE (Section 5.5.3).

5.5.1 Performance regarding the QoE
The output of RAViR and the JCRP variants is a list with
N recommended videos for each user. To understand how
these methods perform in relation to the recommendations
and how such recommendations affect the overall QoE
perceived by the users, we classify the recommendations
into four types:

• edge rec: recommendation whose video is in the
cache and factors F2, F3 and F4 do not occur;

• cloud rec: recommendation whose video is not in the
cache and factors F3 and F4 do not occur;
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• under rec: recommendation whose video resolution
is below than what could be reproduced by the UE
according to the available resources;

• over rec: recommendation whose video resolution is
higher than what the UE is able to reproduce.

For this evaluation, we consider three scenarios, namely:

• Scenario 1: each user receives a list with three recom-
mended videos (N = 3) and the distortion tolerance
accepted by the users is 1% (Tol(u) = 1%,∀u ∈ U );

• Scenario 2: each user receives a list with three recom-
mended videos (N = 3) and the distortion tolerance
accepted by the users is 10% (Tol(u) = 10%,∀u ∈
U );

• Scenario 3: each user receives a list with five recom-
mended videos (N = 5) and the distortion tolerance
accepted by the users is 1% (Tol(u) = 1%,∀u ∈ U ).

Fig. 2 shows the percentage of recommendations that
fall into each recommendation type (left Y-axis), as well
as the normalized average QoE (right Y-axis) achieved by
each method, considering the three scenarios previously
described. In this evaluation, ICI = 60%, while the total
cache capacity (C) varies in each column of graphics, with
the values 50, 300, and 700. Each row exhibits the results
from one scenario. As expected, by increasing the total cache
capacity from 50 to 700, the percentage of recommendations
in the cache (edge rec) increases, while the percentage of
recommendations in the cloud (cloud rec) decreases in all
methods, for all scenarios.

When a large percentage of recommendations made by
a certain method falls into the under rec or over rec type,
the QoE is low. Similarly, as the percentage of recommen-
dations falling into the cloud rec type increases, the QoE
decreases. However, the (negative) impact of under rec and
over rec recommendations on the QoE is higher than that of
cloud rec recommendations. This is illustrated in Fig. 2(a),
where the percentage of cloud rec recommendations issued
by RAViR is the highest among all evaluated methods but,
despite this fact, the QoE is the highest for this scenario.

Since scenario 2 (Figs. 2(d), 2(e), and 2(f)) has a higher
user distortion tolerance in comparison with scenario 1,
the methods have more flexibility to accommodate the
different user preferences in the cache. As a consequence,
more recommendations fall into the edge rec type and the
QoE increases for all methods. On the other hand, scenario
3 (Figs. 2(g), 2(h) and 2(i)), that has a higher number of
recommended videos than scenario 1 but the same user
distortion tolerance, becomes more dependent on content
provided by the cloud. As a consequence, the QoE is slightly
lower for all methods in this scenario.

Overall, we observe that the QoE achieved by RAViR is
notably higher than the ones achieved by the JCRP variants
in all scenarios and regardless of the total cache capacity.
This happens because RAViR takes into account computing
and network resources at the moment of its recommenda-
tions, avoiding the undesirable recommendation types of
under rec and over rec. The poor performance of all JCRP
variants comes from their unawareness of the computing
and network resources and the consequent design focused
only on the content cache hit. As a consequence, most of

the time, JCRP variants recommend videos with inadequate
representations (under rec or over rec).

Fig. 3 summarizes the performance of the methods in
terms of average user QoE but presenting a larger range
of cache capacities (from 50 until 1000). RAViR presents
the expected behavior that consists of increasing QoE as
a function of the cache capacity. This increase tends to
become less relevant as the cache system approaches the
optimal condition, i.e., when all videos are cached. Natu-
rally, Tol(u) = 10% (Fig. 3(b)) presents better results than
Tol(u) = 1% (Fig. 3(a)) because the sharing opportunities
are higher. The overall behavior of JCRP-L is similar to
RAViR, but exhibiting a notably lower performance since
only the lowest representation is cached while many UEs
can consume content with higher quality. The behavior of
JCRP-M and JCRP-H seems inconsistent since the increase in
the cache capacity sometimes implies decreasing QoE. How-
ever, this is consistent with the representation unawareness
of the method, which implies storing content with repre-
sentations that can not be consumed by certain UEs due to
limitations in its computing or wireless link capacities. This
evaluation illustrates numerically the potential benefits of
RAViR. For example, RAViR shows an increase from 68%
to 85% in QoE when compared with JCRP-L in all cache
sizes, and more than 100% when compared with the other
methods (JCRP-M and JCRP-H).

5.5.2 Performance regarding the CHR
This evaluation is focused on the cache hit ratio metric
(CHR), which was described at the end of Section 5.4.
Similar to the previous section, we consider three and five
recommendations per user (N = 3 and N = 5) and the
distortion tolerance accepted by the users (Tol(u)) assumes
1%. The results obtained with a distortion tolerance of 10%
are similar and are omitted due to space constraint.

Fig. 4 shows the performance of the methods in terms
of the CHR as a function of the cache capacity, which
varies from 50 to 1000. Fig. 4(a) shows the results obtained
according to Equation (21), where over rec and under rec
recommendations are not considered as cache hit. There
is some similarity between the CHR and the QoE results
shown in Fig. 3(a), although the CHR is more sensitive
to the cache capacity. Again, RAViR has a more consistent
behavior than the JCRP variants, with the CHR increas-
ing as the cache capacity increases. This consistency is
also observed when comparing the results with three and
five recommendations per user. As expected, the CHR
achieved by RAViR with three recommendations per user
is higher than that with five. The poor performance of all
JCRP variants was expected due to their unawareness of
the computing and network resources. JCRP-L is penalized
mostly due to under rec recommendations, JCRP-M suffers
with under and orver rec recommendations, while JCRP-H
is penalized mostly by over rec recommendations. JCRP-L
performs slightly better than the other JCRP variants since it
can keep more videos in the cache, as it operates with lower
video representations. Overall, the effective CHR achieved
by RAViR is at least 14% higher than that of JCRP-L.

Fig. 4(b) shows the same evaluation of Fig. 4(a) but
using a more conservative definition for the CHR, where
only over rec recommendations are not considered cache
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(b) Scenario 1, Cache size=300
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(c) Scenario 1, Cache size=700
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(d) Scenario 2, Cache size=50
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(e) Scenario 2, Cache size=300
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(f) Scenario 2, Cache size=700
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(g) Scenario 3, Cache size=50
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(h) Scenario 3, Cache size=300
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(i) Scenario 3, Cache size=700

Fig. 2. Percentage of recommendations by type and average user QoE, for each method, in the three considered scenarios. Total cache capacity
assume the values 50, 300, and 700.

hit. In this case, when the total cache capacity is small, the
JCRP variants perform better than RAViR. This happens
because RAViR pursues a perfect match of content and
representation for each user, making sharing more difficult
among users. For the JCRP variants, however, as long as a
cached video matches with the recommended content and
does not lead to over rec recommendation, it can be shared
among users. While this more conservative definition of
CHR limits the sharing opportunities for RAViR, it also
shows, by comparing Figs. 4(b) and 3(a), that high CHR
does not imply in high user QoE. Additionally, this conser-
vative definition does not reflect the way DASH (Dynamic
Adaptive Streaming over HTTP) clients, commonly used
in video streaming, work in practice. In general, DASH
clients seek to obtain chunks in the best video representation
supported by the UE given the limitations imposed by
network throughput.

5.5.3 Impact of the Internet Congestion Index on QoE

To evaluate the impact of the Internet Congestion Index
(ICI) on the QoE, we vary this index from 10% to 70%,
representing a wide range of network conditions. Naturally,
if the recommended video is in the cache, then the UE does
not need to access the Internet, i.e., ICI = 0. The ICI has a
major impact on scenarios where the total cache capacity is
small. Thus, this evaluation employs a total cache capacity
of 50 (C = 50). The experiments are carried out considering
three and five recommendations per user (N = 3 and
N = 5), and a distortion tolerance accepted by users of 1%
(Tol(u) = 1,∀u ∈ U ).

Fig. 5 shows the average QoE as a function of the ICI .
On one hand, all JCRP variants are unaware of the network
conditions, which makes them less sensitive to the ICI
than RAViR. On the other hand, the performance of RAViR
is still notably superior to all JCRP variants even in the
worst evaluated case. For example, under ICI = 70%, the
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Fig. 3. Impact of the total cache capacity on the average user QoE achieved by RAViR and JCRP variants. In the figures, solid lines represent
experiment with 3 recommendations per user (N = 3) and dashed lines represents experiment with 5 recommendations per user (N = 5).
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smallest advantage of RAViR (N = 5) over JCRP-L (N = 3),
the JCRP variant with the best performance, is nearly 62%.
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50) and 3 and 5 recommendations per user (N = 3 and N = 5).

5.6 Highlighting the Network Conditions
Nowadays, user mobile devices are still very heterogeneous
and their capabilities to present video content varies signifi-
cantly. However, the continuous evolution of these devices,
in general, followed by large drops in their prices, may
change the context in a near future. Under this assumption,
the network conditions become the relevant impact factor
in the consumption of the video content. In this section,
we evaluate the methods assuming that all UEs have com-
puting capabilities to play video content in any resolution,
constrained only by the network conditions.

In this context, we need to update some concepts in our
model. Initially, we redefine Best(u) (Equation (3)) so that
the best video representation for user u is the one that best
meets the requirements of the quality of its UE wireless link,
i.e.,

Best(u) = ResCQI(CQI(u)). (22)

Based on the new values of Best(u), we recompute
our model (PRes

u , PPref
u , and PReq

u ) and find the new
recommendation window Wu, for every u ∈ U . We then
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solve the RAViR problem removing the user mobile device
constraint. Note that, in this redefinition of the problem, the
QoE is now affected by factors F1, F2, and F4. Additionally,
the recommendations are now classified into three types:
edge rec, cloud rec, or under rec.

Fig. 6 shows the percentage of recommendations that
fall into each recommendation type (left Y-axis) and the
normalized average QoE (right Y-axis) achieved by each
method, considering Scenario 1 described in Section 5.5.1.
Scenarios 2 and 3 are omitted for the sake of brevity, but
they provide the same conclusions. Figs. 6(a), 6(b), and 6(c)
show the result for a total cache capacity of 50, 300, and 700,
respectively.

Comparing the results presented in Fig. 2 (from Sec-
tion 5.5.1) with the results shown in Fig. 6, there is a large
decrease in the average QoE achieved by all methods. The
reason is the update in the users’ expectations that were
originally partially represented by their devices capabilities,
and are now unconstrained in terms of device resolution
(i.e., all UEs can play the highest video resolution). At the
same time, the network conditions are the same as the
previous evaluation, meaning an increased demand with the
same amount of resources (both network and MEC). Thus,
the overall decrease in the average QoE is a consistent result.
Since video resolution is not constrained in any UE, the
JCRP-H variant becomes the one with the best performance,
since now it experiences under rec recommendations only
due to the network conditions, and over rec recommenda-
tions do not happen in this context. On the other hand, the
network resource awareness of RAViR still provides a re-
markable advantage. For example, RAViR offers an average
QoE more than 100% higher than all JCRP variants in all
evaluated scenarios and cache capacities.

Generally, the users of a Radio Access Network (RAN)
experience the same ICI at a specific point in time, but
each UE has its own wireless link, i.e., UEs may obtain
different CQI values. Thus, CQI is relevant in the choice of
the video representation and, as a consequence, in the QoE
value. Fig. 7 shows the QoE values as a function of the CQI
and video representation. If all representations of all videos
were available in the cache system, given a certain CQI
value for the UE wireless link, it is expected that a network-
aware caching and recommendation method chooses the
video representation that provides the highest QoE value
(lighters colors in Fig. 7). On the other hand, caching and
recommendation methods unaware of network resources
may frequently choose video representations under or over
the UE wireless link capacity (darker colors in Fig. 7), which
impacts negatively in the QoE. Since RAViR is aware of
computing and network resources, it operates in the optimal
range illustrated in Fig. 7.

6 CONCLUSIONS

In this paper, we focus on jointly optimizing cache and
recommendations for improving network performance and
user satisfaction. We present an optimization model that
represents a recommendation system aware of the avail-
able resources (cache, resources of the users’ devices, and
network resources) and coupled with the cache storage
policy. We show that taking into consideration the device

limitations, video representation, and network conditions
in the joint decision on video recommendation and content
caching promotes noticeable improvements in user satisfac-
tion. Our proposal, named RAViR, outperforms a state-of-
the-art method in all evaluated scenarios, considering both
QoE and cache hit ratio metrics.

As future work, we intend to evaluate RAViR in a labora-
tory testbed, making recommendations and content caching
online for synthetic users. In this type of environment, we
can evaluate the effective cache hit ratio and also measure
other QoE metrics, such as the ITU-T rec. P. 1203 [29]. This
sort of experiment also demands some adaptations to the
recommendation and cache systems, since the CQI estimator
is prone to error and the cached content needs dynamic
changes, for example. As a starting point, we are investi-
gating the use of tools such as godash and godashbed [30]
to create the testbed. We believe this experimental envi-
ronment will provide insights for improving RAViR, which
we intend to make available as an open-source tool for
joint optimization of recommendation and caching in MEC
systems of 5G/B5G networks.
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à Pesquisa do Estado de Goiás (FAPEG) in the call No.
03/2015 FAPEG/CNPq/PPP, process No. 201810267001734.
This work was also supported by the Ministério da Ciência,
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J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia,
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