391 research outputs found

    The significance of local thermal non-equilibrium in simulations of enhanced geothermal recovery

    Get PDF
    International audienceAccessing the thermo-mechanical response of large deep hot dry rock (HDR) reservoirs during geothermal extraction remains a challenging task that can be comprehended with numerical tools. Of crucial im-portance to the economic viability of these HDR reservoirs is the knowledge of thermal output evolution, fluid excessive pressure and induced thermal stress, at various steps of the circulation tests. Thermal recovery from a HDR reservoir, viewed as a deformable fractured medium, is investigated with a focus on the assumption of lo-cal thermal non-equilibrium (LTNE). To this end, a fully coupled finite element formulation for a thermo-elastic fractured medium in LTNE is developed (Gelet et al. 2013). Hydraulic diffusion, thermal diffusion, forced con-vection and deformation are considered in a two-phase framework, the solid phase being made by impermeable solid blocks separated by saturated fractures. Each of the two phases is endowed with its own temperature. The resulting system of equations is used to address a generic HDR reservoir subjected to temperature and pressure gradients. A change of time profile of the outlet fluid temperature is observed as the fracture spacing increases, switching from a single-step pattern to a double-step pattern, a feature which is viewed as characteristic of established LTNE. A dimensionless number is proposed to delineate between local thermal equilibrium (LTE) and non-equilibrium. This number embodies local physical properties of the mixture, elements of the geometry of the reservoir and the production flow rate. All the above properties being fixed, the resulting fracture spacing threshold between LTNE and LTE is found to decrease with increasing porosity. The thermally induced effec-tive stress is tensile near the injection well, illustrating the thermal contraction of the rock, while the pressure contribution of the fracture fluid is negligible during the late period

    A computational framework for immiscible three-phase flow in deformable porous media

    Get PDF
    Several soil decontamination processes and enhanced oil recovery techniques involve the co-existence of three immiscible fluids, such as water, a nonaqueous phase liquid and a gas. In this work, a computational framework based on the individual mass balance of each phase is developed, aimed at simulating three-phase flow in a deformable rock through the finite element method, without resorting to specific simplifications that are usually required by standard numerical schemes. Key ingredients of the model are: expression of the residual in terms of mass contents, consistent lumping of the storage terms in the residual and algorithmic (tangent) matrix, consistent integration rules, the use of a minimum relative permeability and a time marching scheme based on trapezoidal integration. Special convective boundary conditions are adopted for pressures to be consistent with the assumed rock wettability properties during co-current imbibition. The resulting numerical scheme can deal with arbitrary saturation and/or pressure boundary conditions. The model is tested by simulating gas injection tests, and both co- and counter-current water imbibition tests, in a deformable core. To assess the performance and robustness of the whole framework, sensitivity analyses are performed upon varying key constitutive, loading and numerical parameters

    Unconventional high-energy-state contribution to the Cooper pairing in under-doped copper-oxide superconductor HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta}

    Full text link
    We study the temperature-dependent electronic B1g Raman response of a slightly under-doped single crystal HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta} with a superconducting critical temperature Tc=122 K. Our main finding is that the superconducting pair-breaking peak is associated with a dip on its higher-energy side, disappearing together at Tc. This result hints at an unconventional pairing mechanism, whereas spectral weight lost in the dip is transferred to the pair-breaking peak at lower energies. This conclusion is supported by cellular dynamical mean-field theory on the Hubbard model, which is able to reproduce all the main features of the B1g Raman response and explain the peak-dip behavior in terms of a nontrivial relationship between the superconducting and the pseudo gaps.Comment: 7 pages 4 figure

    Gravity in quantum spacetime

    Full text link
    The literature on quantum-gravity-inspired scenarios for the quantization of spacetime has so far focused on particle-physics-like studies. This is partly justified by the present limitations of our understanding of quantum-gravity theories, but we here argue that valuable insight can be gained through semi-heuristic analyses of the implications for gravitational phenomena of some results obtained in the quantum-spacetime literature. In particular, we show that the types of description of particle propagation that emerged in certain quantum-spacetime frameworks have striking implications for gravitational collapse and for the behaviour of gravity at large distances.Comment: This essay received honorable mention in the Gravity Research Foundation 2010 Awards for Essays on Gravitatio

    Beam Intensity and Energy Control for the SPIRAL2 Facility

    Get PDF
    TUPB029 - ISBN 878-3-95450-122-9International audienceThe first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current is measured by using couples of ACCT-DCCT installed along the lines and the beam energy by using a time of flight device. This paper gives explanations about the technical solutions, the results and resolutions for measuring and controlling the beam

    Ovarian Hyperstimulation Syndrome with pleural effusion: a case report

    Get PDF
    In corporate governance systems boards perform three functions: the interlocking function (from a resource-dependency and network perspective), a monitoring function (from an agency perspective), and a strategic function (from a strategic choice perspective). In a one-tier board the board of directors incorporates non-executive directors (outsiders, they sometimes represent the interests of key-stakeholders) and executive directors (top management) of the firm. In a two-tier board there is a clear distinction between the directors as members of a supervisory board and the top management team. The board serves in this respect as a supervisory board vis Ă  vis the management board. In the Netherlands a two-tier board is prevalent. Firms who act under the structural regime have boards that are characterized by the co-option principle. This means that board members have to act in the best interest of the firm and ultimately choose each other (and are not chosen by the shareholders or other stakeholders). Co-option has some advantages, but also some clear drawbacks, such as the potentiality of groupthink. The structural regime and other governance regimes, in which the relationship between supervisory board and management board is established, have moderating effects on the hypothesized relationships between the three functions and performance of firms.
    • …
    corecore