943 research outputs found

    The distribution of extremal points of Gaussian scalar fields

    Full text link
    We consider the signed density of the extremal points of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a 4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio

    Asymptotic behaviour of the Rayleigh--Taylor instability

    Full text link
    We investigate long time numerical simulations of the inviscid Rayleigh-Taylor instability at Atwood number one using a boundary integral method. We are able to attain the asymptotic behavior for the spikes predicted by Clavin & Williams\cite{clavin} for which we give a simplified demonstration. In particular we observe that the spike's curvature evolves like t3t^3 while the overshoot in acceleration shows a good agreement with the suggested 1/t51/t^5 law. Moreover, we obtain consistent results for the prefactor coefficients of the asymptotic laws. Eventually we exhibit the self-similar behavior of the interface profile near the spike.Comment: 4 pages, 6 figure

    Signed zeros of Gaussian vector fields-density, correlation functions and curvature

    Full text link
    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear in J. Phys.

    Steep sharp-crested gravity waves on deep water

    Full text link
    A new type of steady steep two-dimensional irrotational symmetric periodic gravity waves on inviscid incompressible fluid of infinite depth is revealed. We demonstrate that these waves have sharper crests in comparison with the Stokes waves of the same wavelength and steepness. The speed of a fluid particle at the crest of new waves is greater than their phase speed.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    The effect of autocorrelation length on the real area of contact and friction behavior of rough surfaces

    Get PDF
    Autocorrelation length (ACL) is a surface roughness parameter that provides spatial information of surfacetopography that is not included in amplitude parameters such as root-mean-square roughness. This paper presents a relationship between ACL and the friction behavior of a rough surface. The influence of ACL on the peak distribution of a profile is studied based on Whitehouse and Archard’s classical analysis [Whitehouse and ArchardProc. R. Soc. London, Ser. A316, 97 (1970)] and their results are extended to compare profiles from different surfaces. The probability density function of peaks and the mean peak height of a profile are given as functions of its ACL. These results are used to estimate the number of contact points when a rough surface comes into contact with a flat surface, and it is shown that the larger the ACL of the rough surface, the less the number of contact points. Based on Hertzian contact mechanics, it is shown that the real area of contact increases with increasing of number of contact points. Since adhesivefriction force is proportional to the real area of contact, this suggests that the adhesivefriction behavior of a surface will be inversely proportional to its ACL. Results from microscale friction experiments on polished and etchedsiliconsurfaces are presented to verify the analysis

    Statistics of Gravitational Microlensing Magnification. I. Two-Dimensional Lens Distribution

    Get PDF
    (Abridged) In this paper we refine the theory of microlensing for a planar distribution of point masses. We derive the macroimage magnification distribution P(A) at high magnification (A-1 >> tau^2) for a low optical depth (tau << 1) lens distribution by modeling the illumination pattern as a superposition of the patterns due to individual ``point mass plus weak shear'' lenses. We show that a point mass plus weak shear lens produces an astroid- shaped caustic and that the magnification cross-section obeys a simple scaling property. By convolving this cross-section with the shear distribution, we obtain a caustic-induced feature in P(A) which also exhibits a simple scaling property. This feature results in a 20% enhancement in P(A) at A approx 2/tau. In the low magnification (A-1 << 1) limit, the macroimage consists of a bright primary image and a large number of faint secondary images formed close to each of the point masses. Taking into account the correlations between the primary and secondary images, we derive P(A) for low A. The low-A distribution has a peak of amplitude ~ 1/tau^2 at A-1 ~ tau^2 and matches smoothly to the high-A distribution. We combine the high- and low-A results and obtain a practical semi-analytic expression for P(A). This semi-analytic distribution is in qualitative agreement with previous numerical results, but the latter show stronger caustic-induced features at moderate A for tau as small as 0.1. We resolve this discrepancy by re-examining the criterion for low optical depth. A simple argument shows that the fraction of caustics of individual lenses that merge with those of their neighbors is approx 1-exp(-8 tau). For tau=0.1, the fraction is surprisingly high: approx 55%. For the purpose of computing P(A) in the manner we did, low optical depth corresponds to tau << 1/8.Comment: 35 pages, including 6 figures; uses AASTeX v4.0 macros; submitted to Ap

    Basins of attraction on random topography

    Full text link
    We investigate the consequences of fluid flowing on a continuous surface upon the geometric and statistical distribution of the flow. We find that the ability of a surface to collect water by its mere geometrical shape is proportional to the curvature of the contour line divided by the local slope. Consequently, rivers tend to lie in locations of high curvature and flat slopes. Gaussian surfaces are introduced as a model of random topography. For Gaussian surfaces the relation between convergence and slope is obtained analytically. The convergence of flow lines correlates positively with drainage area, so that lower slopes are associated with larger basins. As a consequence, we explain the observed relation between the local slope of a landscape and the area of the drainage basin geometrically. To some extent, the slope-area relation comes about not because of fluvial erosion of the landscape, but because of the way rivers choose their path. Our results are supported by numerically generated surfaces as well as by real landscapes

    HOL-TestGen 1.8.0 User Guide

    Get PDF

    Acoustic Energy and Momentum in a Moving Medium

    Full text link
    By exploiting the mathematical analogy between the propagation of sound in a non-homogeneous potential flow and the propagation of a scalar field in a background gravitational field, various wave ``energy'' and wave ``momentum'' conservation laws are established in a systematic manner. In particular the acoustic energy conservation law due to Blokhintsev appears as the result of the conservation of a mixed co- and contravariant energy-momentum tensor, while the exchange of relative energy between the wave and the mean flow mediated by the radiation stress tensor, first noted by Longuet-Higgins and Stewart in the context of ocean waves, appears as the covariant conservation of the doubly contravariant form of the same energy-momentum tensor.Comment: 25 Pages, Late

    Distribution of nearest distances between nodal points for the Berry function in two dimensions

    Full text link
    According to Berry a wave-chaotic state may be viewed as a superposition of monochromatic plane waves with random phases and amplitudes. Here we consider the distribution of nodal points associated with this state. Using the property that both the real and imaginary parts of the wave function are random Gaussian fields we analyze the correlation function and densities of the nodal points. Using two approaches (the Poisson and Bernoulli) we derive the distribution of nearest neighbor separations. Furthermore the distribution functions for nodal points with specific chirality are found. Comparison is made with results from from numerical calculations for the Berry wave function.Comment: 11 pages, 7 figure
    • …
    corecore