219 research outputs found
Distributed Minimum Cut Approximation
We study the problem of computing approximate minimum edge cuts by
distributed algorithms. We use a standard synchronous message passing model
where in each round, bits can be transmitted over each edge (a.k.a.
the CONGEST model). We present a distributed algorithm that, for any weighted
graph and any , with high probability finds a cut of size
at most in
rounds, where is the size of the minimum cut. This algorithm is based
on a simple approach for analyzing random edge sampling, which we call the
random layering technique. In addition, we also present another distributed
algorithm, which is based on a centralized algorithm due to Matula [SODA '93],
that with high probability computes a cut of size at most
in rounds for any .
The time complexities of both of these algorithms almost match the
lower bound of Das Sarma et al. [STOC '11], thus
leading to an answer to an open question raised by Elkin [SIGACT-News '04] and
Das Sarma et al. [STOC '11].
Furthermore, we also strengthen the lower bound of Das Sarma et al. by
extending it to unweighted graphs. We show that the same lower bound also holds
for unweighted multigraphs (or equivalently for weighted graphs in which
bits can be transmitted in each round over an edge of weight ),
even if the diameter is . For unweighted simple graphs, we show
that even for networks of diameter , finding an -approximate minimum cut
in networks of edge connectivity or computing an
-approximation of the edge connectivity requires rounds
A rare presentation of the Klinefelter's syndrome
A 16 years old boy with Chronic Renal Failure (CRF) was not suspected of having Klinefelter's syndrome until he complained of painful gynecomastia. He was under haemodialysis for 2 years. At first, he was in an approximately full pubertal development (P5, G5), but he had a small and a firm testis (length 2.2cm) and some degree of facial male pattern hair. He also had a decreased upper to lower body segment ratio and despite having chronic renal failure, he was taller than his parents and siblings. His laboratory tests showed high levels of FSH and normal levels of LH and testosterone. With regards to all these findings, we suspected that there might be an occult Klinefelter's syndrome. So, we made his karyotype that showed a 47XXY pattern. Because there are only a few number of cases that have occult Klinefelter's syndrome in the basis of chronic renal failure, we decided to report this case
Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the Inner Tracking System of HERA-B
The results of five years of development of the inner tracking system of the
HERA-B experiment and first experience from the data taking period of the year
2000 are reported. The system contains 184 chambers, covering a sensitive area
of about 20 * 20 cm2 each. The detector is based on microstrip gas counters
(MSGCs) with diamond like coated (DLC) glass wafers and gas electron
multipliers (GEMs). The main problems in the development phase were gas
discharges in intense hadron beams and aging in a high radiation dose
environment. The observation of gas discharges which damage the electrode
structure of the MSGC led to the addition of the GEM as a first amplification
step. Spurious sparking at the GEM cannot be avoided completely. It does not
affect the GEM itself but can produce secondary damage of the MSGC if the
electric field between the GEM and the MSGC is above a threshold depending on
operation conditions. We observed that aging does not only depend on the dose
but also on the spot size of the irradiated area. Ar-DME mixtures had to be
abandoned whereas a mixture of 70% Ar and 30% CO2 showed no serious aging
effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements
indicate that the DLC of the MSGC is deteriorated by the gas amplification
process. As a consequence, long term gain variations are expected. The Inner
Tracker has successfully participated in the data taking at HERA-B during
summer 2000.Comment: 29 pages, 22 figure
A protective role for BRCA2 at stalled replication forks
The hereditary breast and ovarian cancer predisposition genes BRCA1 and BRCA2 account for the lion's share of heritable breast cancer risk in the human population. Loss of function of either gene results in defective homologous recombination (HR) and triggers genomic instability, accelerating breast tumorigenesis. A long-standing hypothesis proposes that BRCA1 and BRCA2 mediate HR following attempted replication across damaged DNA, ensuring error-free processing of the stalled replication fork. A recent paper describes a new replication fork protective function of BRCA2, which appears to collaborate with its HR function to suppress genomic instability
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
Chicago, IL, June 27 - July 3, 200
- …