2,873 research outputs found
Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions
As computing resources are limited, choosing the parameters for a full
Lattice QCD simulation always amounts to a compromise between the competing
objectives of a lattice spacing as small, quarks as light, and a volume as
large as possible. Aiming to push unquenched simulations with the Wilson action
towards the computationally expensive regime of small quark masses we address
the question whether one can possibly save computing time by extrapolating
results from small lattices to the infinite volume, prior to the usual chiral
and continuum extrapolations. In the present work the systematic volume
dependence of simulated pion and nucleon masses is investigated and compared
with a long-standing analytic formula by Luescher and with results from Chiral
Perturbation Theory. We analyze data from Hybrid Monte Carlo simulations with
the standard (unimproved) two-flavor Wilson action at two different lattice
spacings of a=0.08fm and 0.13fm. The quark masses considered correspond to
approximately 85 and 50% (at the smaller a) and 36% (at the larger a) of the
strange quark mass. At each quark mass we study at least three different
lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08fm).Comment: 21 pages, 20 figures, REVTeX 4; v2: caption of Fig.7 corrected, one
reference adde
Accelerating Wilson Fermion Matrix Inversions by Means of the Stabilized Biconjugate Gradient Algorithm
The stabilized biconjugate gradient algorithm BiCGStab recently presented by
van der Vorst is applied to the inversion of the lattice fermion operator in
the Wilson formulation of lattice Quantum Chromodynamics. Its computational
efficiency is tested in a comparative study against the conjugate gradient and
minimal residual methods. Both for quenched gauge configurations at beta= 6.0
and gauge configurations with dynamical fermions at beta=5.4, we find BiCGStab
to be superior to the other methods. BiCGStab turns out to be particularly
useful in the chiral regime of small quark masses.Comment: 25 pages, WUB 94-1
Light Quark Masses with Wilson Fermions
We present new data on the mass of the light and strange quarks from
SESAM/TL. The results were obtained on lattice-volumes of
and points, with the possibility to investigate finite-size
effects. Since the SESAM/TL ensembles at have been
complemented by configurations with , moreover, we are now able to
attempt the continuum extrapolation (CE) of the quark masses with standard
Wilson fermions.Comment: Lattice2001(spectrum), minor correction
Compact QED under scrutiny: it's first order
We report new results from our finite size scaling analysis of 4d compact
pure U(1) gauge theory with Wilson action. Investigating several cumulants of
the plaquette energy within the Borgs-Kotecky finite size scaling scheme we
find strong evidence for a first-order phase transition and present a high
precision value for the critical coupling in the thermodynamic limit.Comment: Lattice2002(Spin
Decorrelating Topology with HMC
The investigation of the decorrelation efficiency of the HMC algorithm with
respect to vacuum topology is a prerequisite for trustworthy full QCD
simulations, in particular for the computation of topology sensitive
quantities. We demonstrate that for mpi/mrho ratios <= 0.69 sufficient
tunneling between the topological sectors can be achieved, for two flavours of
dynamical Wilson fermions close to the scaling region beta=5.6. Our results are
based on time series of length 5000 trajectories.Comment: change of comments: LATTICE98(confine
Scanning the Topological Sectors of the QCD Vacuum with Hybrid Monte Carlo
We address a long standing issue and determine the decorrelation efficiency
of the Hybrid Monte Carlo algorithm (HMC), for full QCD with Wilson fermions,
with respect to vacuum topology. On the basis of five state-of-the art QCD
vacuum field ensembles (with 3000 to 5000 trajectories each and
m_pi/m_rho-ratios in the regime >0.56, for two sea quark flavours) we are able
to establish, for the first time, that HMC provides sufficient tunneling
between the different topological sectors of QCD. This will have an important
bearing on the prospect to determine, by lattice techniques, the topological
susceptibility of the vacuum, and topology sensitive quantities like the spin
content of the proton, or the eta' mass.Comment: 5 pages, 4 eps-figure
Volume dependence of light hadron masses in full lattice QCD
The aim of the GRAL project is to simulate full QCD with standard Wilson
fermions at light quark masses on small to medium-sized lattices and to obtain
infinite-volume results by extrapolation. In order to establish the functional
form of the volume dependence we study systematically the finite-size effects
in the light hadron spectrum. We give an update on the status of the GRAL
project and show that our simulation data for the light hadron masses depend
exponentially on the lattice size.Comment: 3 pages, 1 figure, Lattice2003(spectrum
Transverse Structure of Nucleon Parton Distributions from Lattice QCD
This work presents the first calculation in lattice QCD of three moments of
spin-averaged and spin-polarized generalized parton distributions in the
proton. It is shown that the slope of the associated generalized form factors
decreases significantly as the moment increases, indicating that the transverse
size of the light-cone quark distribution decreases as the momentum fraction of
the struck parton increases.Comment: 4 pages, 1 figur
- …
