1,620 research outputs found

    Nonequilibrium Transport in Quantum Impurity Models (Bethe-Ansatz for open systems)

    Full text link
    We develop an exact non-perturbative framework to compute steady-state properties of quantum-impurities subject to a finite bias. We show that the steady-state physics of these systems is captured by nonequilibrium scattering eigenstates which satisfy an appropriate Lippman-Schwinger equation. Introducing a generalization of the equilibrium Bethe-Ansatz - the Nonequilibrium Bethe-Ansatz (NEBA), we explicitly construct the scattering eigenstates for the Interacting Resonance Level model and derive exact, nonperturbative results for the steady-state properties of the system.Comment: 4 pages, 1 figur

    Frequency dependent effective conductivity of two-dimensional metal-dielectric composites

    Full text link
    We analyze a random resistor-inductor-capacitor (RLC)(RLC) lattice model of 2-dimensional metal-insulator composites. The results are compared with Bruggeman's and Landauer's Effective Medium Approximations where a discrepancy was observed for some frequency zones. Such a discrepancy is mainly caused by the strong conductivity fluctuations. Indeed, a two-branches distribution is observed for low frequencies. We show also by increasing the system size that at pcp_c the so-called Drude peak vanishes; it increases for vanishing losses.Comment: 7 pages including all figures, accepted in Int. J. Mod. Phys.

    Landauer Conductance of Luttinger Liquids with Leads

    Full text link
    We show that the dc conductance of a quantum wire containing a Luttinger liquid and attached to non-interacting leads is given by e2/he^2/h per spin orientation, regardless of the interactions in the wire. This explains the recent observations of the absence of conductance renormalization in long high-mobility GaAsGaAs wires by Tarucha, Honda and Saku (Solid State Communications {\bf 94}, 413 (1995)).Comment: 4 two-column pages, RevTeX + 1 uuencoded figure

    Exact Master Equation and Quantum Decoherence of Two Coupled Harmonic Oscillators in a General Environment

    Get PDF
    In this paper we derive an exact master equation for two coupled quantum harmonic oscillators interacting via bilinear coupling with a common environment at arbitrary temperature made up of many harmonic oscillators with a general spectral density function. We first show a simple derivation based on the observation that the two-harmonic oscillator model can be effectively mapped into that of a single harmonic oscillator in a general environment plus a free harmonic oscillator. Since the exact one harmonic oscillator master equation is available [Hu, Paz and Zhang, Phys. Rev. D \textbf{45}, 2843 (1992)], the exact master equation with all its coefficients for this two harmonic oscillator model can be easily deduced from the known results of the single harmonic oscillator case. In the second part we give an influence functional treatment of this model and provide explicit expressions for the evolutionary operator of the reduced density matrix which are useful for the study of decoherence and disentanglement issues. We show three applications of this master equation: on the decoherence and disentanglement of two harmonic oscillators due to their interaction with a common environment under Markovian approximation, and a derivation of the uncertainty principle at finite temperature for a composite object, modeled by two interacting harmonic oscillators. The exact master equation for two, and its generalization to NN, harmonic oscillators interacting with a general environment are expected to be useful for the analysis of quantum coherence, entanglement, fluctuations and dissipation of mesoscopic objects towards the construction of a theoretical framework for macroscopic quantum phenomena.Comment: 35 pages, revtex, no figures, 2nd version, references added, to appear in PR

    Intensity distribution of scalar waves propagating in random media

    Full text link
    Transmission of the scalar field through the random medium, represented by the system of randomly distributed dielectric cylinders is calculated numerically. System is mapped to the problem of electronic transport in disordered two-dimensional systems. Universality of the statistical distribution of transmission parameters is analyzed in the metallic and in the localized regimes.In the metallic regime the universality of the transmission statistics in all transparent channels is observed. In the band gaps, we distinguish the disorder induced (Anderson) localization from the tunneling through the system due to the gap in the density of states. We show also that absorption causes rapid decrease of the mean conductance, but, contrary to the localized regime, the conductance is self-averaged with a Gaussian distribution

    Quantum heat transfer through an atomic wire

    Get PDF
    We studied the phononic heat transfer through an atomic dielectric wire with both infinite and finite lengths by using a model Hamiltonian approach. At low temperature under ballistic transport, the thermal conductance contributed by each phonon branch of a uniform and harmonic chain cannot exceed the well-known value which depends linearly on temperature but is material independent. We predict that this ballistic thermal conductance will exhibit stepwise behavior as a function of temperature. By performing numerical calculations on a more realistic system, where a small atomic chain is placed between two reservoirs, we also found resonance modes, which should also lead to the stepwise behavior in the thermal conductance.Comment: 14 pages, 2 separate figure

    Experimental Verification of the Quantized Conductance of Photonic Crystal Waveguides

    Full text link
    We report experiments that demonstrate the quantization of the conductance of photonic crystal waveguides. To obtain a diffusive wave, we have added all the transmitted channels for all the incident angles. The conductance steps have equal height and a width of one half the wavelength used. Detailed numerical results agree very well with the novel experimental results.Comment: Phys. Rev. B (submitted

    Rashba effect induced localization in quantum networks

    Get PDF
    We study a quantum network extending in one-dimension (chain of square loops connected at one vertex) made up of quantum wires with Rashba spin-orbit coupling. We show that the Rashba effect may give rise to an electron localization phenomenon similar to the one induced by magnetic field. This localization effect can be attributed to the spin precession due to the Rashba effect. We present results both for the spectral properties of the infinite chain, and for linear transport through a finite-size chain connected to leads. Furthermore, we study the effect of disorder on the transport properties of this network.Comment: To appear in Phys. Rev. Let

    Quantum Ballistic Evolution in Quantum Mechanics: Application to Quantum Computers

    Full text link
    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators TT is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proved that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics.Comment: 37 pages Latexwith 2 postscript figures tar+gzip+uuencoded, to be published in Phys. Rev.

    Electron-vibration interaction in single-molecule junctions: from contact to tunneling regime

    Get PDF
    Point contact spectroscopy on a H2O molecule bridging Pt electrodes reveals a clear crossover between enhancement and reduction of the conductance due to electron-vibration interaction. As single channel models predict such a crossover at transmission probability of t=0.5, we used shot noise measurements to analyze the transmission and observed at least two channels across the junction where the dominant channel has t=0.51+/-0.01 transmission probability at the crossover conductance, which is consistent with the predictions for single-channel models.Comment: 4 pages, 1 table, 4 figure
    corecore