212 research outputs found

    Data validation and missing data reconstruction using self-organizing map for water treatment

    Full text link
    Applications in the water treatment domain generally rely on complex sensors located at remote sites. The processing of the corresponding measurements for generating higher-level information such as optimization of coagulation dosing must therefore account for possible sensor failures and imperfect input data. In this paper, selforganizing map (SOM)-based methods are applied to multiparameter data validation and missing data reconstruction in a drinking water treatment. The SOM is a special kind of artificial neural networks that can be used for analysis and visualization of large high-dimensional data sets. It performs both in a nonlinear mapping from a high-dimensional data space to a low-dimensional space aiming to preserve the most important topological and metric relationships of the original data elements and, thus, inherently clusters the data. Combining the SOM results with those obtained by a fuzzy technique that uses marginal adequacy concept to identify the functional states (normal or abnormal), the SOM performances of validation and reconstruction process are tested successfully on the experimental data stemming from a coagulation process involved in drinking water treatment

    Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework

    Get PDF
    While many existing formal concept analysis algorithms are efficient, they are typically unsuitable for distributed implementation. Taking the MapReduce (MR) framework as our inspiration we introduce a distributed approach for performing formal concept mining. Our method has its novelty in that we use a light-weight MapReduce runtime called Twister which is better suited to iterative algorithms than recent distributed approaches. First, we describe the theoretical foundations underpinning our distributed formal concept analysis approach. Second, we provide a representative exemplar of how a classic centralized algorithm can be implemented in a distributed fashion using our methodology: we modify Ganter's classic algorithm by introducing a family of MR* algorithms, namely MRGanter and MRGanter+ where the prefix denotes the algorithm's lineage. To evaluate the factors that impact distributed algorithm performance, we compare our MR* algorithms with the state-of-the-art. Experiments conducted on real datasets demonstrate that MRGanter+ is efficient, scalable and an appealing algorithm for distributed problems.Comment: 17 pages, ICFCA 201, Formal Concept Analysis 201

    Effects of Oxygen Vacancy Defect on Magnetic Properties of (Ca,Mn)O Doped System

    Get PDF
    We study the (Ca, Mn)O doped system with oxygen vacancy point defects in monoxide CaO material. Using density functional theory calculation based on a generalized gradient approximation, we show that such a defect can convert the ground state from a spin glass to a ferromagnetic phase. Then, we discuss the stability of the magnetism in the (Ca, Mn)O doped system. The ferromagnetic and the disordered local moment states are also investigated and a super-exchange mechanism is proposed to explain such ferromagnetic magnetic behaviours. Based on the mean field approximation used in the elaboration of the Heisenberg model, we estimate the Curie temperature

    Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method

    Get PDF
    In this study, a numerical investigation has been performed using the computational Harlow-Welch MAC (Marker and Cell) finite difference method to analyse the unsteady state two-dimensional natural convection in lid-driven square cavity with left wall maintained at constant heat flux and remaining walls kept thermally insulated. The significant parameters in the present study are Reynolds number (Re), thermal Grashof number (Gr) and Prandtl number (Pr) and Peclét number (Pe =PrRe). The structure of thermal convection patterns is analysed via streamline, vorticity, pressure and temperature contour plots. The influence of the thermophysical parameters on these distributions is described in detail. Validation of solutions with earlier studies is included. Mesh independence is also conducted. It is observed that an increase in Prandtl number intensifies the primary circulation whereas it reduces the heat transfer rate. Increasing thermal Grashof number also decreases heat transfer rates. Furthermore the isotherms are significantly compressed towards the left (constant flux) wall with a variation in Grashof number while Peclét number is fixed. The study is relevant to solar collector heat transfer simulations and also crystal growth technologies

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    Effect of Iron Overload and Iron Deficiency on Liver Hemojuvelin Protein

    Get PDF
    INTRODUCTION: Hemojuvelin (Hjv) is a key component of the signaling cascade that regulates liver hepcidin (Hamp) expression. The purpose of this study was to determine Hjv protein levels in mice and rats subjected to iron overload and iron deficiency. METHODS: C57BL/6 mice were injected with iron (200 mg/kg); iron deficiency was induced by feeding of an iron-deficient diet, or by repeated phlebotomies. Erythropoietin (EPO)-treated mice were administered recombinant EPO at 50 U/mouse. Wistar rats were injected with iron (1200 mg/kg), or fed an iron-deficient diet. Hjv protein was determined by immunoblotting, liver samples from Hjv-/- mice were used as negative controls. Mouse plasma Hjv content was determined by a commercial ELISA kit. RESULTS: Liver crude membrane fraction from both mice and rats displayed a major Hjv-specific band at 35 kDa, and a weaker band of 20 kDa. In mice, the intensity of these bands was not changed following iron injection, repeated bleeding, low iron diet or EPO administration. No change in liver crude membrane Hjv protein was observed in iron-treated or iron-deficient rats. ELISA assay for mouse plasma Hjv did not show significant difference between Hjv+/+ and Hjv-/- mice. Liver Hamp mRNA, Bmp6 mRNA and Id1 mRNA displayed the expected response to iron overload and iron deficiency. EPO treatment decreased Id1 mRNA, suggesting possible participation of the bone morphogenetic protein pathway in EPO-mediated downregulation of Hamp mRNA. DISCUSSION: Since no differences between Hjv protein levels were found following various experimental manipulations of body iron status, the results indicate that, in vivo, substantial changes in Hamp mRNA can occur without noticeable changes of membrane hemojuvelin content. Therefore, modulation of hemojuvelin protein content apparently does not represent the limiting step in the control of Hamp gene expression
    • …
    corecore