121 research outputs found

    Tentative identification of the apoproteins of iron-sulfur centers of Photosystem I

    Get PDF
    AbstractA newly purified Photosystem (PS) I particle is described, with still active iron-sulfur acceptors: A, B and X. Apart from the apoprotein of P700, 3 other main polypeptides of this particle are located at 20, 17 and 10 kDa, and two minor ones are detectable at 16.5 and 8 kDa. Both in vivo 35S labeling and carboxymethylation with iodo[14C]acetate show that most of the cysteine residues are located in the 8-kDa band. The amino acid composition of this band reveals important common features with small iron-sulfur proteins of the ferredoxin type

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    Isolation and sequence of a tomato cDNA clone encoding subunit II of the photosystem I reaction center

    Full text link
    We report here the isolation and nucleotide sequence of a cDNA clone encoding a phtosystem I polypeptide that is recognized by a polyclonal antibody prepared against subunit II of the photosystem I reaction center. The transit peptide processing site was determined to occur after Met 50 by N terminal sequencing. The decuced sequence of this protein predicts that the polypeptide has a net positive charge (pI=9.6) and no membrane spanning regions are evident from the hydropathy plot. Based on these considerations and the fact that subunit II is solubilized by alkali treatment of thylakoids, we concluded that subunit II is an extrinsic membrane protein. The absence of hydrophobic regions characteristic of thylakoid transfer domains furthermore implies that subunit II is localized on the stromal side of the membrane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43419/1/11103_2004_Article_BF00014949.pd

    Outcomes of cartilage repair techniques for chondral injury in the hip-a systematic review.

    Get PDF
    OBJECTIVE/PURPOSE: The aim of the study was to assess the options of treatment and their related outcomes for chondral injuries in the hip based on the available evidence whilst highlighting new and innovative techniques. METHODS: A systematic review of the literature from PubMed (Medline), EMBASE, Google Scholar, British Nursing Index (BNI), Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Allied and Complementary Medicine Database (AMED) was undertaken from their inception to March 2017 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Clinical outcome studies, prospective/retrospective case series and case reports that described the outcome of cartilage repair technique for the chondral injury in the hip were included. Studies on total hip replacement, animal studies, basic studies, trial protocols and review articles were excluded. RESULTS: The systematic review found 21 relevant papers with 596 hips. Over 80% of the included studies were published in or after 2010. Most studies were case series or case reports (18 studies, 85.7%). Arthroscopy was used in 11 studies (52.4%). The minimum follow-up period was six months. Mean age of the participants was 37.2 years; 93.5% of patients had cartilage injuries of the acetabulum and 6.5% of them had injuries of the femoral head. Amongst the 11 techniques described in the systematic review, autologous matrix-induced chondrogenesis, osteochondral autograft transplantation and microfracture were the three frequently reported techniques. CONCLUSION: Over ten different techniques are available for cartilage repair in the hip, and most of them have good short- to medium-term outcomes. However, there are no robust comparative studies to assess superiority of one technique over another, and further research is required in this arena

    A manganese protein complex within the chloroplast structures

    Get PDF
    corecore