1,854,855 research outputs found

    Bose-Einstein condensates under a spatially-modulated transverse confinement

    Full text link
    We derive an effective nonpolynomial Schrodinger equation (NPSE) for self-repulsive or attractive BEC in the nearly-1D cigar-shaped trap, with the transverse confining frequency periodically modulated along the axial direction. Besides the usual linear cigar-shaped trap, where the periodic modulation emulates the action of an optical lattice (OL), the model may be also relevant to toroidal traps, where an ordinary OL cannot be created. For either sign of the nonlinearity, extended and localized states are found, in the numerical form (using both the effective NPSE and the full 3D Gross-Pitaevskii equation) and by means of the variational approximation (VA). The latter is applied to construct ground-state solitons and predict the collapse threshold in the case of self-attraction. It is shown that numerical solutions provided by the one-dimensional NPSE are always very close to full 3D solutions, and the VA yields quite reasonable results too. The transition from delocalized states to gap solitons, in the first finite bandgap of the linear spectrum, is examined in detail, for the repulsive and attractive nonlinearities alike.Comment: 10 pages, 10 figures, accepted for publication in Phys. Rev.

    Comment on "Remark on the external-field method in QCD sum rules"

    Get PDF
    It is proved, that suggested by Jin modified formalism in the external-field method in QCD sum rules exactly coincides with the formalism used before. Therefore, unlike the claims of ref.1, this formalism cannot improve the predictability and reliability of external-field sum rule calculations in comparison with those, done by the standard approach. PACS number(s): 12.38.Lg, 11.55.HxComment: 5 pages, RevTe

    On the spin density wave transition in a two dimensional spin liquid

    Full text link
    Strongly correlated two dimensional electrons are believed to form a spin liquid in some regimes of density and temperature. As the density is varied, one expects a transition from this spin liquid state to a spin density wave antiferromagnetic state. In this paper we show that it is self-consistent to assume that this transition is second order and, on this assumption, determine the critical behavior of the 2pF2p_F susceptibility, the NMR rates T1T_1 and T2T_2 and the uniform susceptibility. We compare our results to data on high TcT_c materials.Comment: 14 pages, 6 Postscript figures in a separate fil

    An improved processible acetylene-terminated polyimide for composites

    Get PDF
    The newest member of a family of thermosetting acetylene-substituted polyimide oligomers is HR600P. This oligomer is the isoimide version of the oligomer known as HR600P and Thermid 600. Although both types of material yield the same heat resistant end products after cure, HR600P has much superior processing characteristics. This attributed to its lower melting temperature (160 + or - 10 C, 320 + or - 20 F) in contrast to 202 C (396 F) for Thermid MC-600, its longer gel time at its processing temperature (16 to 30 minutes bvs 3 minutes), and its excellent solubility in low boiling solvents such as tetrahydrofuran, glymes, or 4:1 methyl ethyl ketone/toluene mixtures. These advantages provide more acceptable coating and impregnation procedures, allow for more complete removal at lower temperatures, provide a longer pot life or working time, and allow composite structure fabrication in conventional autoclaves used for epoxy composite curing. The excellent processing characteristics of HR600P allow its use in large area laminated structures, structural composites, and molding compositions

    Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature

    Full text link
    We show theoretically and experimentally that the conductance of small disordered samples exhibits random oscillations as a function of temperature. The amplitude of the oscillations decays as a power law of temperature, and their characteristic period is of the order of the temperature itself

    Electron Counting Statistics and Coherent States of Electric Current

    Full text link
    A theory of electron counting statistics in quantum transport is presented. It involves an idealized scheme of current measurement using a spin 1/2 coupled to the current so that it precesses at the rate proportional to the current. Within such an approach, counting charge without breaking the circuit is possible. As an application, we derive the counting statistics in a single channel conductor at finite temperature and bias. For a perfectly transmitting channel the counting distribution is gaussian, both for zero-point fluctuations and at finite temperature. At constant bias and low temperature the distribution is binomial, i.e., it arises from Bernoulli statistics. Another application considered is the noise due to short current pulses that involve few electrons. We find the time-dependence of the driving potential that produces coherent noise-minimizing current pulses, and display analogies of such current states with quantum-mechanical coherent states.Comment: 43 pages, LaTeX, to appear in the Journal of Mathematical Physics special volume on Mesoscopic Physic

    Distribution function of persistent current

    Full text link
    We introduce a variant of the replica trick within the nonlinear sigma model that allows calculating the distribution function of the persistent current. In the diffusive regime, a Gaussian distribution is derived. This result holds in the presence of local interactions as well. Breakdown of the Gaussian statistics is predicted for the tails of the distribution function at large deviations

    Quantum bright solitons in the Bose-Hubbard model with site-dependent repulsive interactions

    Full text link
    We introduce a one-dimensional (1D) spatially inhomogeneous Bose-Hubbard model (BHM) with the strength of the onsite repulsive interactions growing, with the discrete coordinate zjz_{j}, as zjα|z_{j}|^{\alpha } with α>0\alpha >0. Recently, the analysis of the mean-field (MF) counterpart of this system has demonstrated self-trapping of robust unstaggered discrete solitons, under condition α>1\alpha >1. Using the numerically implemented method of the density matrix renormalization group (DMRG), we demonstrate that, in a certain range of interaction, the BHM also self-traps, in the ground state, into a soliton-like configuration, at α>1\alpha >1, and remains weakly localized at α<1\alpha <1. An essential quantum feature is a residual density in the background surrounding the soliton-like peak in the BHM ground state, while in the MF limit the finite-density background is absent. Very strong onsite repulsion eventually destroys soliton-like states, and, for integer densities, the system enters the Mott phase with a spatially uniform densityComment: Phys. Rev. A, in pres
    corecore