26 research outputs found

    Strategy for large???scale monolithic Perovskite/Silicon tandem solar cell: A review of recent progress

    Get PDF
    For any solar cell technology to reach the final mass-production/commercialization stage, it must meet all technological, economic, and social criteria such as high efficiency, large-area scalability, long-term stability, price competitiveness, and environmental friendliness of constituent materials. Until now, various solar cell technologies have been proposed and investigated, but only crystalline silicon, CdTe, and CIGS technologies have overcome the threshold of mass-production/commercialization. Recently, a perovskite/silicon (PVK/Si) tandem solar cell technology with high efficiency of 29.1% has been reported, which exceeds the theoretical limit of single-junction solar cells as well as the efficiency of stand-alone silicon or perovskite solar cells. The International Technology Roadmap for Photovoltaics (ITRPV) predicts that silicon-based tandem solar cells will account for about 5% market share in 2029 and among various candidates, the combination of silicon and perovskite is the most likely scenario. Here, we classify and review the PVK/Si tandem solar cell technology in terms of homo- and hetero-junction silicon solar cells, the doping type of the bottom silicon cell, and the corresponding so-called normal and inverted structure of the top perovskite cell, along with mechanical and monolithic tandemization schemes. In particular, we review and discuss the recent advances in manufacturing top perovskite cells using solution and vacuum deposition technology for large-area scalability and specific issues of recombination layers and top transparent electrodes for large-area PVK/Si tandem solar cells, which are indispensable for the final commercialization of tandem solar cells

    Electrical and optical characterisation of silicon nanocrystals embedded in SiC

    No full text
    Silicon nanocrystals (Si NCs) are a promising candidate for the top cell of an all-Si tandem solar cell with a band gap from 1.3-1.7 eV, tuneable by adjusting NC size. They are readily produced within a Si-based dielectric matrix by precipitation from the Si excess in multilayers of alternating stoichiometric and silicon-rich layers. Here we examined the luminescence and transport of Si NCs embedded in SiC. We observed luminescence that redshifts from 2.0 to 1.5 eV with increasing nominal NC size. Upon further investigation, we found that this redshift is to a large extent due to Fabry-Pérot interference. Correction for this effect allows an analysis of the spectrum emitted from within the sample. We also produced p-i-n solar cells and found that the observed I-V curves under illumination could be well-fitted by typical thin-film solar cell models including finite series and parallel resistances, and a voltage-dependent current collection function. A minority carrier mobility-lifetime product on the order of 10-10 cm2/V was deduced, and a maximum open-circuit voltage of 370 mV achieved. © (2014) Trans Tech Publications, Switzerland

    Electrical and optical characterisation of silicon nancrystals embedded in SiC

    No full text
    Silicon nanocrystals (Si NCs) are a promising candidate for the top cell of an all-Si tandem solar cell with a band gap from 1.3-1.7 eV, tuneable by adjusting NC size. They are readily produced within a Si-based dielectric matrix by precipitation from the Si excess in multilayers of alternating stoichiometric and silicon-rich layers. Here we examined the luminescence and transport of Si NCs embedded in SiC. We observed luminescence that redshifts from 2.0 to 1.5 eV with increasing nominal NC size. Upon further investigation, we found that this redshift is to a large extent due to Fabry-Pérot interference. Correction for this effect allows an analysis of the spectrum emitted from within the sample. We also produced p-i-n solar cells and found that the observed I-V curves under illumination could be well-fitted by typical thin-film solar cell models including finite series and parallel resistances, and a voltage-dependent current collection function. A minority carrier mobility-lifetime product on the order of 10-10 cm2/V was deduced, and a maximum open-circuit voltage of 370 mV achieved
    corecore