127 research outputs found
Relationship between Tumor DNA Methylation Status and Patient Characteristics in African-American and European-American Women with Breast Cancer
Aberrant DNA methylation is critical for development and progression of breast cancer. We investigated the association of CpG island methylation in candidate genes and clinicopathological features in 65 African-American (AA) and European-American (EA) breast cancer patients. Quantitative methylation analysis was carried out on bisulfite modified genomic DNA and sequencing (pyrosequencing) for promoter CpG islands of p16, ESR1, RASSF1A, RARβ2, CDH13, HIN1, SFRP1 genes and the LINE1 repetitive element using matched paired non-cancerous and breast tumor specimen (32 AA and 33 EA women). Five of the genes, all known tumor suppressor genes (RASSF1A, RARβ2, CDH13, HIN1 and SFRP1), were found to be frequently hypermethylated in breast tumor tissues but not in the adjacent non-cancerous tissues. Significant differences in the CDH13 methylation status were observed by comparing DNA methylation between AA and EA patients, with more obvious CDH13 methylation differences between the two patient groups in the ER- disease and among young patients (age<50). In addition, we observed associations between CDH13, SFRP1, and RASSF1A methylation and breast cancer subtypes and between SFRP1 methylation and patient's age. Furthermore, tumors that received neoadjuvant therapy tended to have reduced RASSF1A methylation when compared with chemotherapy naïve tumors. Finally, Kaplan Meier survival analysis showed a significant association between methylation at 3 loci (RASSF1A, RARβ2 and CDH13) and reduced overall disease survival. In conclusion, the DNA methylation status of breast tumors was found to be significantly associated with clinicopathological features and race/ethnicity of the patients
Pathway-based expression profiling of benign prostatic hyperplasia and prostate cancer delineates an immunophilin molecule associated with cancer progression
Aberrant restoration of AR activity is linked with prostate tumor growth, therapeutic failures and development of castrate-resistant prostate cancer. Understanding the processes leading to ARreactivation should provide the foundation for novel avenues of drug discovery. A differential gene expression study was conducted using biopsies from CaP and BPH patients to identify the components putatively responsible for reinstating AR activity in CaP. From the set of genes upregulated in CaP,
FKBP52, an AR co-chaperone, was selected for further analysis. Expression of FKBP52 was positively correlated with that of c-Myc. The functional cross-talk between c-Myc and FKBP52 was established using c-Myc specific-siRNA to LNCaP cells that resulted in reduction of FKBP52. A non-canonical E-box sequence housing a putative c-Myc binding site was detected on the FKBP4 promoter using in silico
search. LNCaP cells transfected with the FKBP52 promoter cloned in pGL3 basic showed increased luciferase activity which declined considerably when the promoter-construct was co-transfected with c-Myc specific-siRNA. ChIP-PCR confirmed the binding of c-Myc with the conserved E-box located in the
FKBP52 promoter. c-Myc downregulation concomitantly affected expression of FGF8. Since expression of FGF8 is controlled by AR, our study unveiled a novel functional axis between c-Myc, AR and FGF8 operating through FKBP52
Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease.
BACKGROUND: The fibroblast growth factor (FGF) axis is an important mitogenic stimulus in prostate carcinogenesis. We have previously reported that transcript level of human similar expression to FGF (hSef), a key regulator of this pathway, is downregulated in clinical prostate cancer. In this study we further analysed the role of hSef in prostate cancer. METHODS: hSef function was studied in in vitro and in vivo prostate cancer models using stable over-expression clones. Protein expression of hSef was studied in a comprehensive tissue microarray. RESULTS: Stable over-expression of hSef resulted in reduced in vitro cancer cell proliferation, migration and invasive potential. In an in vivo xenograft model, the expression of hSef significantly retarded prostate tumour growth as compared with empty vector (P=0.03) and non-transfected (P=0.0001) controls. Histological examination further showed a less invasive tumour phenotype and reduced numbers of proliferating cells (P=0.0002). In signalling studies, hSef inhibited FGF-induced ERK phosphorylation, migration to the nucleus and activation of a reporter gene. Constitutively active Ras, however, was able to reverse these effects, suggesting that hSef exerts an effect either above or at the level of Ras in prostate cancer cells. In a large tissue microarray, we observed a significant loss of hSef protein in high-grade (P<0.0001) and metastatic (P<0.0001) prostate cancer. CONCLUSIONS: Considered together, the role of hSef in attenuating FGF signalling and evidence of downregulation in advanced tumours argue strongly for a tumour suppressor function in human prostate cancer
Quantitative methylation profiling in tumor and matched morphologically normal tissues from breast cancer patients
Discovery of Novel Hypermethylated Genes in Prostate Cancer Using Genomic CpG Island Microarrays
BACKGROUND: Promoter and 5' end methylation regulation of tumour suppressor genes is a common feature of many cancers. Such occurrences often lead to the silencing of these key genes and thus they may contribute to the development of cancer, including prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify methylation changes in prostate cancer, we performed a genome-wide analysis of DNA methylation using Agilent human CpG island arrays. Using computational and gene-specific validation approaches we have identified a large number of potential epigenetic biomarkers of prostate cancer. Further validation of candidate genes on a separate cohort of low and high grade prostate cancers by quantitative MethyLight analysis has allowed us to confirm DNA hypermethylation of HOXD3 and BMP7, two genes that may play a role in the development of high grade tumours. We also show that promoter hypermethylation is responsible for downregulated expression of these genes in the DU-145 PCa cell line. CONCLUSIONS/SIGNIFICANCE: This study identifies novel epigenetic biomarkers of prostate cancer and prostate cancer progression, and provides a global assessment of DNA methylation in prostate cancer
Alcohol induces cell proliferation via hypermethylation of ADHFE1 in colorectal cancer cells
Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity
AIMS/HYPOTHESIS: Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. MATERIALS AND METHODS: Insulin sensitivity in Pten heterozygous (Pten(+/−)) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten(+/−) mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3β (GSK3β), a substrate of PKB/Akt, was determined by western immunoblotting. RESULTS: Following i.p. insulin challenge, blood glucose levels in Pten(+/−) mice remained depressed for up to 120 min, whereas glucose levels in wild-type mice began to recover after approximately 30 min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten(+/−) mice. Enhanced glucose uptake was observed both in Pten(+/−) myocytes and in skeletal muscle of Pten(+/−) mice by PET. PKB and GSK3β phosphorylation was enhanced and prolonged in Pten(+/−) myocytes. CONCLUSIONS/INTERPRETATION: Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten(+/−) mice
Molecular profiling of cervical cancer progression
Most cancer patients die of metastatic or recurrent disease, hence the importance to identify target genes upregulated in these lesions. Although a variety of gene signatures associated with metastasis or poor prognosis have been identified in various cancer types, it remains a critical problem to identify key genes as candidate therapeutic targets in metastatic or recurrent cancer. The aim of our study was to identify genes consistently upregulated in both lymph node micrometastases and recurrent tumours compared to matched primary tumours in human cervical cancer. Taqman Low-Density Arrays were used to analyse matched tumour samples, obtained after laser-capture microdissection of tumour cell islands for the expression of 96 genes known to be involved in tumour progression. Immunohistochemistry was performed for a panel of up- and downregulated genes. In lymph node micrometastases, most genes were downregulated or showed expressions equal to the levels found in primary tumours. In more than 50% of lymph node micrometastases studied, eight genes (AKT, BCL2, CSFR1, EGFR1, FGF1, MMP3, MMP9 and TGF-β) were upregulated at least two-fold. Some of these genes (AKT and MMP3) are key regulators of epithelial–mesenchymal transition in cancer. In recurrent tumours, almost all genes were upregulated when compared to the expression profiles of the matched primary tumours, possibly reflecting their aggressive biological behaviour. The two genes showing a consistent downregulated expression in almost all lymph node metastases and recurrent tumours were BAX and APC. As treatment strategies are very limited for metastatic and recurrent cervical cancer, the upregulated genes identified in this study are potential targets for new molecular treatment strategies in metastatic or recurrent cervical cancer
Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene
Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential
FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome
This study examines the clinical impact of PTEN genomic deletions using fluorescence in situ hybridisation (FISH) analysis of 107 prostate cancers, with follow-up information covering a period of up to 10 years. Tissue microarray analysis using interphase FISH indicated that hemizygous PTEN losses were present in 42/107 (39%) of prostatic adenocarcinomas, with a homozygous PTEN deletion observed in 5/107 (5%) tumours. FISH analysis using closely linked probes centromeric and telomeric to the PTEN indicated that subband microdeletions accounted for ∼70% genomic losses. Kaplan–Meier survival analysis of PTEN genomic losses (hemizygous and homozygous deletion vs not deleted) identified subgroups with different prognosis based on their time to biochemical relapse after surgery, and demonstrated significant association between PTEN deletion and an earlier onset of disease recurrence (as determined by prostate-specific antigen levels). Homozygous PTEN deletion was associated with a much earlier onset of biochemical recurrence (P=0.002). Furthermore, PTEN loss at the time of prostatectomy correlated with clinical parameters of more advanced disease, such as extraprostatic extension and seminal vesicle invasion. Collectively, our data indicates that haploinsufficiency or PTEN genomic loss is an indicator of more advanced disease at surgery, and is predictive of a shorter time to biochemical recurrence of disease
- …
