2,198 research outputs found

    Air Resources Board

    Get PDF

    Air Resources Board

    Get PDF

    Air Resources Board

    Get PDF

    Characterization of entangling properties of quantum measurement via two-mode quantum detector tomography using coherent state probes

    Get PDF
    Entangled measurement is a crucial tool in quantum technology. We propose a new entanglement measure of multi-mode detection, which estimates the amount of entanglement that can be created in a measurement. To illustrate the proposed measure, we perform quantum tomography of a two-mode detector that is comprised of two superconducting nanowire single photon detectors. Our method utilizes coherent states as probe states, which can be easily prepared with accuracy. Our work shows that a separable state such as a coherent state is enough to characterize a potentially entangled detector. We investigate the entangling capability of the detector in various settings. Our proposed measure verifies that the detector makes an entangled measurement under certain conditions, and reveals the nature of the entangling properties of the detector. Since the precise characterization of a detector is essential for applications in quantum information technology, the experimental reconstruction of detector properties along with the proposed measure will be key features in future quantum information processing.Comment: 18 pages, 6 figure

    Spatial and temporal characterization of a Bessel beam produced using a conical mirror

    Full text link
    We experimentally analyze a Bessel beam produced with a conical mirror, paying particular attention to its superluminal and diffraction-free properties. We spatially characterized the beam in the radial and on-axis dimensions, and verified that the central peak does not spread over a propagation distance of 73 cm. In addition, we measured the superluminal phase and group velocities of the beam in free space. Both spatial and temporal measurements show good agreement with the theoretical predictions.Comment: 5 pages, 6 figure

    Stationary distributions of continuous-time Markov chains: a review of theory and truncation-based approximations

    Get PDF
    Computing the stationary distributions of a continuous-time Markov chain involves solving a set of linear equations. In most cases of interest, the number of equations is infinite or too large, and cannot be solved analytically or numerically. Several approximation schemes overcome this issue by truncating the state space to a manageable size. In this review, we first give a comprehensive theoretical account of the stationary distributions and their relation to the long-term behaviour of the Markov chain, which is readily accessible to non-experts and free of irreducibility assumptions made in standard texts. We then review truncation-based approximation schemes paying particular attention to their convergence and to the errors they introduce, and we illustrate their performance with an example of a stochastic reaction network of relevance in biology and chemistry. We conclude by elaborating on computational trade-offs associated with error control and some open questions
    corecore