57 research outputs found

    The web-based simulation and information service for multi-hazard impact chains. Design document.

    Get PDF
    The overall objective of the PARATUS project and the platform is the co-development of a web-based simulation and information service for first and second responders and other stakeholders to evaluate the impact chains of multi-hazard events with particular emphasis on cross-border and cascading impacts. This deliverable provides a first impression of the platform and its components. A central theme in the PARATUS project is the co-development of the tools with stakeholders. The central stakeholders within the four applications case studies are therefore full project partners. They will be directly involved in the development of the platform. We foresee that the PARATUS Platform will have two major blocks: an information service that provides static information (or regularly updated information) and simulation service, which is a dynamic component where stakeholders can interactively work with the tools in the platform. The PARATUS will further make sure that documentation (e.g., software accompanying documentation) is also publicly available via the project website1 and other trusted repositories. The deliverable 4.1 was submitted to the European Commission on 31/07/2023 and is waiting for approval by the Research Executive Agency. Therefore, this current version may not represent the final version of the deliverable

    Comparative proteomic and transcriptomic profile of Staphylococcus epidermidis biofilms grown in glucose-enriched medium

    Get PDF
    Staphylococcus epidermidis is an important nosocomial agent among carriers of indwelling medical devices, due to its strong ability to form biofilms on inert surfaces. Contrary to some advances made in the transcriptomic field, proteome characterization of S. epidermidis biofilms is less developed. To highlight the relation between transcripts and proteins of S. epidermidis biofilms, we analyzed the proteomic profile obtained by two mechanical lysis methods (sonication and bead beating), associated with two distinct detergent extraction buffers, namely SDS and CHAPS. Based on gel electrophoresis-LC-MS/MS, we identified a total of 453 proteins. While lysis with glass beads provided greater amounts of protein, CHAPS extraction buffer allowed identification of a higher number of proteins compared to SDS. Our data shows the impact of different protein isolation methods in the characterization of the S. epidermidis biofilm proteome. Furthermore, the correlation between proteomic and transcriptomic profiles was evaluated. The results confirmed that proteomic and transcriptomic data should be analyzed simultaneously in order to have a comprehensive understanding of a specific microbiological condition.The authors thank Stephen Lorry at Harvard Medical School for providing CLC Genomics software. This work was funded by Fundacao para a Ciencia e a Tecnologia (FCT) and COMPETE grants PTDC/BIA-MIC/113450/2009, FCOMP-01-0124-FEDER-014309, QOPNA research unit (project PEst-C/QUI/UI0062/2013), RNEM (National Mass Spetrometry Network) and CENTRO-07-ST24-FEDER-002034. The following authors had an individual FCT fellowship: VC (SFRH/BD/78235/2011); AF (SFRH/BD/62359/2009). NC is an Investigador FCT. The authors also thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2-0 Novo Norte), QREN, FEDER. The authors also acknowledge the project "Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB", Ref. FCOMP-01-0124-FEDER-027462

    Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials

    Immunological Mechanism of Action and Clinical Profile of Disease-Modifying Treatments in Multiple Sclerosis

    Get PDF
    corecore