18 research outputs found

    Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO

    Get PDF
    Creep motion of magnetic domain wall (DW), thermally activated DW dynamics under subthreshold driving forces, is a paradigm to understand the interaction between driven interfaces and applied external forces. Previous investigation has shown that DW in a metallic system interacts differently with current and magnetic field, manifesting itself as different universality classes for the creep motion. In this article, we first review the experimental determination of the universality classes for current- and field-driven DW creeps in a Ta/CoFeB/MgO wire, and then elucidate the underlying factors governing the obtained results. We show that the nature of torque arising from current in association with DW configuration determines universality class for the current-induced creep in this system. We also discuss the correlation between the field-induced DW creep characteristics and structure observed by a transmission electron microscope. The observed results are expected to provide a deeper understanding for physics of DW motion in various magnetic materials

    Magnetic profile of proximity-coupled (Dy,Bi)2Te3/(Cr,Sb)2Te3 topological insulator heterostructures

    Get PDF
    Magnetic topological insulators (TIs) are an ideal playground for the study of novel quantum phenomena building on time-reversal symmetry-broken topological surface states. By combining different magnetic TIs in a heterostructure, their magnetic and electronic properties can be precisely tuned. Recently, we have combined high-moment Dy:Bi2Te3 with high transition temperature Cr:Sb2Te3 in a superlattice, and we found, using x-ray magnetic circular dichroism (XMCD), that long-range magnetic order can be introduced in the Dy:Bi2Te3 layers. Accompanying first-principles calculations indicated that the origin of the long-range magnetic order is a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. However, based on XMCD alone, which is either averaging over the entire thin-film stack or is surface-sensitive, this coupling scenario could not be fully confirmed. Here we use polarized neutron reflectometry, which is ideally suited for the detailed study of superlattices, to retrieve the magnetization in a layer- and interface-resolved way. We find that the magnetization is, in contrast to similar recent studies, homogeneous throughout the individual layers, with no apparent interfacial effects. This finding demonstrates that heterostructure engineering is a powerful way of controlling the magnetic properties of entire layers, with the effects of coupling reaching beyond the interface region

    Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111)

    Get PDF
    Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors

    Kerr effect anomaly in magnetic topological insulator superlattices

    No full text
    We report the magneto-optical Kerr effect (MOKE) study of magnetic topological insulator superlattice films with alternating transition-metal and rare-earth doping. We observe an unexpected hump in the MOKE hysteresis loops upon magnetization reversal at low temperatures, reminiscent of the topological Hall effect(THE) reported in transport measurements. The THE is commonly associated with the existence of magnetic skyrmions, i.e., chiral spin textures originating from topological defects in real space. Here, the observation of the effect is tied to ferromagnetic ordering in the rare-earth-doped layers of the superlattice. Our study may provide a new approach for the non-invasive optical investigation of skyrmions in magnetic films, complementary to electrical transport measurements, where the topological Hall signal is often the only hint of non-trivial magnetization patterns

    Substrate dependent reduction of Gilbert damping in annealed Heusler alloy thin films grown on group IV semiconductors

    No full text
    A structural and FMR study is presented for epitaxial thin films of the Heusler alloy Co2FeAl0.5Si0.5 (CFAS) grown on Ge(111) and Si(111) substrates. All films, as-grown and post-annealed, show B2 ordering; full chemical order (L21) is not obtained over the range of anneal temperatures used in this study. As-grown films show a lower Gilbert damping constant, α, when grown on a Si(111) substrate compared to Ge(111). Annealing the films to 450 °C significantly reduces α for CFAS on Ge while increasing α for CFAS on Si. This is related to a substrate dependent competition between improvements in lattice structure and increased interfacial intermixing as a function of anneal temperature. The optimal annealing temperature to minimize α is found to differ by ∼100 K between the two substrates. Above an anneal temperature of 500 °C, films grown on both substrates have increased coercivity, decreased saturation magnetization, and show characteristic two-magnon scattering features

    Magnetic profile of proximity-coupled (Dy,Bi)2Te3/(Cr,Sb)2Te3 topological insulator heterostructures

    No full text
    Magnetic topological insulators (TIs) are an ideal playground for the study of novel quantum phenomena building on time-reversal symmetry broken topological surface states. By combining different magnetic TIs in a heterostructure, their magnetic and electronic properties can be precisely tuned. Recently, we have combined high-moment Dy:Bi2Te3with high transition temperature Cr:Sb2Te3 in a superlattice, and found, using x-ray magnetic circular dichroism (XMCD), that long-range magnetic order can be introduced in the Dy:Bi2Te3 layers. Accompanying first-principles calculations indicated that the origin of the long-range magnetic order is a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. However, based on XMCD alone, which is either averaging over the entire thin film stack or is surface sensitive, this coupling scenario could not be fully confirmed. Here we use polarized neutron reflectometry (PNR), which is ideally suited for the detailed study of superlattices, to retrieve the magnetization in a layer- and interface-resolved way. We find that the magnetization is, in contrast to similar recent studies, homogeneous throughout the individual layers, with no apparent interfacial effects. This finding demonstrates that heterostructure engineering is a powerful way of controlling the magnetic properties of entire layers, with the effects of coupling reaching beyond the interface region.</p
    corecore