52 research outputs found
An oxygen-tolerant visible light induced free radical polymerization using mesoporous graphitic carbon nitride
A novel oxygen-tolerant visible light photoinitiating system based on in-situ generation of Fenton reagents using mesoporous graphitic carbon nitride (mpg-C3N4) in conjunction with FeCl3·6H2O, water and oxygen for free radical polymerization is described. A mpg-C3N4-catalysed photoinduced electron transfer reactions of water/oxygen and Fe3+ were demonstrated to enable generation of hydroxyl radicals that are capable of initiating the polymerization of mono and bifunctional monomers. The efficiency of the photoinitiation is controlled by specific surface area of the carbon nitride. Apparently, non-porous carbon nitrides did not yield polymers under the given conditions. Due to its heterogeneous nature, after the polymerization, although at lower rate, separated mpg-C3N4 could be used for further polymerizations
Hydroxyl Functional Polybenzoxazine Precursor as a Versatile Platform for Post-Polymer Modifications
Polybenzoxazine: A Powerful Tool for Removal of Mercury Salts from Water
A reusable macroporous polybenzoxazine resin with high specific surface area was prepared as sorbent material for the removal of mercury salts. For this purpose, allylfunctionalized bis-benzoxazine was cured in dimethyl sulfoxide by thermally activated ring-opening polymerization at 180 degrees C for 3 d followed by a freeze-drying process. The porous structure of the resin was confirmed by SEM analysis and N-2 adsorption/desorption studies at 77.3 K. Among various metal ions, namely, Pb-II, Fe-II, Mn-II, Cu-II, Zn-II, and Cd-II, the porous polybenzoxazine resin exhibited a specific sorption behaviour towards Hg-II. Mainly chemisorption and to some extent adsorption mechanisms were proposed for the observed high loading capacity of the resin. As evidenced by FTIR spectral analysis, the chemisorption is attributed to the coordination system formed between free OH and tertiary amino groups in the polybenzoxazine structure and HgII ions. It was also demonstrated that the porous polybenzoxazine can be regenerated simply by treatment with acids. The resin was recycled for up to seven cycles without any significant loss of activity, as proved by sorption and desorption experiments
- …