276 research outputs found

    Single-photon single ionization of W+^{+} ions: experiment and theory

    Full text link
    Experimental and theoretical results are reported for photoionization of Ta-like (W+^{+}) tungsten ions. Absolute cross sections were measured in the energy range 16 to 245 eV employing the photon-ion merged-beam setup at the Advanced Light Source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16 to 108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s25p65d4(5D)6s  6DJ5s^2 5p^6 5d^4({^5}D)6s \; {^6}{\rm D}_{J}, JJ=1/2, ground level and the associated excited metastable levels with JJ=3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d^5 \; ^6{\rm S}_{J}, JJ=5/2, and for the 4^4F term, 5d^3 6s^2 \; ^4{\rm F}_{J}, with JJ = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+^+ the calculations reproduce the main features of the experimental cross section quite well.Comment: 23 pages, 7 figures, 1 table: Accepted for publication in J. Phys. B: At. Mol. & Opt. Phy

    High-resolution C 1s photoelectron spectra of methane

    Get PDF
    The C 1s partial photoionization cross section and photoelectron angular distribution of methane (CH4) have been measured with high-energy resolution between threshold and 385 eV photon energy. From the analysis of the vibrational fine structure on the C 1s−1 photoelectron line a vibrational energy of 396±2 meV and an equilibrium bond length of 1.039(±0.001) Å for the CH+4 ion have been determined. The lifetime broadening was found to be 83(±10) meV. The weak feature in the photoabsorption cross section just above threshold does not influence the vibrational fine structure in a way typical for a shape resonance. We therefore suggest that it is due to doubly excited states of the type C (1s)−1(Val)−1(Ryd)1a(Ryd)1b, an assignment which is supported by recent Auger decay studies. Measurements of the shakeup structure revealed six satellite lines, one of which increases strongly in intensity at threshold, thus pointing to the existence of a conjugate shakeup process

    Crystallographic and magnetic identification of secondary phase in orientated Bi5Fe0.5Co0.5Ti3O15 ceramics

    Get PDF
    Oxide materials which exhibit both ferroelectricity and ferromagnetism are of great interest for sensors and memory applications. Layered bismuth titanates with an Aurivillius structure, (BiFeO3)nBi4Ti3O12, can possess ferroelectric and ferromagnetic order parameters simultaneously. It has recently been demonstrated that one such example, Bi5Fe0.5Co0.5Ti3O15,where n = 1 with half the Fe3+ sites substituted by Co3+ ions, exhibits both ferroelectric and ferromagnetic properties at room temperature. Here we report the fabrication of highly-oriented polycrystalline ceramics of this material, prepared via molten salt synthesis and uniaxial pressing of high aspect ratio platelets. Electron backscatter images showed that there is a secondary phase within the ceramic matrix which is rich in cobalt and iron, hence this secondary phase could contribute in the main phase ferromagnetic property. The concentration of the secondary phase obtained from secondary electron microscopy is estimated at less than 2.5 %, below the detection limit of XRD. TEM was used to identify the crystallographic structure of the secondary phase, which was shown to be cobalt ferrite, CoFe2O4. It is inferred from the data that the resultant ferromagnetic response identified using VSM measurements was due to the presence of the minor secondary phase. The Remanent magnetization at room temperature was Mr ≈ 76 memu/g which dropped down to almost zero (Mr ≈ 0.8 memu/g) at 460 oC, far lower than the anticipated for CoFe2O4

    Signatures of Spin Glass Freezing in NiO Nanoparticles

    Full text link
    We present a detailed study of the magnetic properties of sol-gel prepared nickel oxide nanoparticles of different sizes. We report various measurements such as frequency, field and temperature dependence of ac susceptibility, temperature and field dependence of dc magnetization and time decay of thermoremanent magnetization. Our results and analysis show that the system behaves as a spin glass.Comment: 8 pages, 9 figure

    Simultaneous ambient pressure X-ray photoelectron spectroscopy and grazing incidence X-ray scattering in gas environments

    Get PDF
    We have developed an experimental system to simultaneously observe surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray scattering (GIXS) in gas pressures as high as the multi-Torr regime, while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano- to the meso-scale. The grazing incidence geometry provides tunable depth sensitivity while scattered X-rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and in ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O2_2 atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent X-ray scattering experiments can greatly benefit from the concepts we present here.Comment: 21 pages, 4 figure

    Probing the molecular environment using spin-resolved photoelectron spectroscopy.

    No full text
    Angle- and spin-resolved photoelectron spectroscopy with linearly and circularly polarized synchrotron radiation were used to study the electronic structure of model triatomic molecules, hydrogen sulfide, and carbonyl sulfide. The spin-polarization measurements of the molecular field split components of the S 2p photolines revealed a strong effect of the different molecular environments. The validity of simple atomic models to explain the results is discussed
    • 

    corecore