130 research outputs found
Anatomy of bubbling solutions
We present a comprehensive analysis of holography for the bubbling solutions
of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring
of a 2-plane, which was argued to correspond to the phase space of free
fermions. We show that in general this phase space distribution does not
determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is
dual to, but it does determine it enough so that vevs of all single trace 1/2
BPS operators in that state are uniquely determined to leading order in the
large N limit. These are precisely the vevs encoded in the asymptotics of the
LLM solutions. We extract these vevs for operators up to dimension 4 using
holographic renormalization and KK holography and show exact agreement with the
field theory expressions.Comment: 67 pages, 6 figures; v2: typos corrected, refs added; v3: expanded
explanations, more typos correcte
Dressed spectral densities for heavy quark diffusion in holographic plasmas
We analyze the large frequency behavior of the spectral densities that govern
the generalized Langevin diffusion process for a heavy quark in the context of
the gauge/gravity duality. The bare Langevin correlators obtained from the
trailing string solution have a singular short-distance behavior. We argue that
the proper dressed spectral functions are obtained by subtracting the
zero-temperature correlators. The dressed spectral functions have a
sufficiently fast fall-off at large frequency so that the Langevin process is
well defined and the dispersion relations are satisfied. We identify the cases
in which the subtraction does not modify the associated low-frequency transport
coefficients. These include conformal theories and the non-conformal,
non-confining models. We provide several analytic and numerical examples in
conformal and non-conformal holographic backgrounds.Comment: 51 pages, 2 figure
On the existence of supergravity duals to D1--D5 CFT states
We define a metric operator in the 1/2-BPS sector of the D1-D5 CFT, the
eigenstates of which have a good semi-classical supergravity dual; the
non-eigenstates cannot be mapped to semi-classical gravity duals. We also
analyse how the data defining a CFT state manifests itself in the gravity side,
and show that it is arranged into a set of multipoles. Interestingly, we find
that quantum mechanical interference in the CFT can have observable
manifestations in the semi-classical gravity dual. We also point out that the
multipoles associated to the normal statistical ensemble fluctuate wildly,
indicating that the mixed thermal state should not be associated to a
semi-classical geometry.Comment: 22 pages, 2 figures. v2 : references added, typos correcte
A consistent truncation of IIB supergravity on manifolds admitting a Sasaki-Einstein structure
We present a consistent truncation of IIB supergravity on manifolds admitting
a Sasaki-Einstein structure, which keeps the metric and five real scalar
fields. This theory can be further truncated to a constrained one-parameter
family that depends on only the metric and one scalar, as well as to a theory
with a metric and three scalars. The reduced theory admits supersymmetric and
non-supersymmetric AdS_5 and AdS_4 x R solutions. We analyze the spectrum
around the AdS critical points and identify the dual operators.Comment: 21 pages; v2: references added and minor improvement
Holographic Renormalization for z=2 Lifshitz Space-Times from AdS
Lifshitz space-times with critical exponent z=2 can be obtained by
dimensional reduction of Schroedinger space-times with critical exponent z=0.
The latter space-times are asymptotically AdS solutions of AdS gravity coupled
to an axion-dilaton system and can be uplifted to solutions of type IIB
supergravity. This basic observation is used to perform holographic
renormalization for 4-dimensional asymptotically z=2 locally Lifshitz
space-times by Scherk-Schwarz dimensional reduction of the corresponding
problem of holographic renormalization for 5-dimensional asymptotically locally
AdS space-times coupled to an axion-dilaton system. We can thus define and
characterize a 4-dimensional asymptotically locally z=2 Lifshitz space-time in
terms of 5-dimensional AdS boundary data. In this setup the 4-dimensional
structure of the Fefferman-Graham expansion and the structure of the
counterterm action, including the scale anomaly, will be discussed. We find
that for asymptotically locally z=2 Lifshitz space-times obtained in this way
there are two anomalies each with their own associated nonzero central charge.
Both anomalies follow from the Scherk--Schwarz dimensional reduction of the
5-dimensional conformal anomaly of AdS gravity coupled to an axion-dilaton
system. Together they make up an action that is of the Horava-Lifshitz type
with nonzero potential term for z=2 conformal gravity.Comment: 32 pages, v2: modified discussion of the central charge
Fake supersymmetry versus Hamilton-Jacobi
We explain when the first-order Hamilton-Jacobi equations for black holes
(and domain walls) in (gauged) supergravity, reduce to the usual first-order
equations derived from a fake superpotential. This turns out to be equivalent
to the vanishing of a newly found constant of motion and we illustrate this
with various examples. We show that fake supersymmetry is a necessary condition
for having physically sensible extremal black hole solutions. We furthermore
observe that small black holes become scaling solutions near the horizon. When
combined with fake supersymmetry, this leads to a precise extension of the
attractor mechanism to small black holes: The attractor solution is such that
the scalars move on specific curves, determined by the black hole charges, that
are purely geodesic, although there is a non-zero potential.Comment: 20 pages, v2: Typos corrected, references adde
Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy
Fluid dynamics corresponds to the dynamics of a substance in the long
wavelength limit. Writing down all terms in a gradient (long wavelength)
expansion up to second order for a relativistic system at vanishing charge
density, one obtains the most general (causal) equations of motion for a fluid
in the presence of shear and bulk viscosity, as well as the structure of the
non-equilibrium entropy current. Requiring positivity of the divergence of the
non-equilibrium entropy current relates some of its coefficients to those
entering the equations of motion. I comment on possible applications of these
results for conformal and non-conformal fluids.Comment: 25 pages, no figures; v2: matches published versio
Finite-Temperature Fractional D2-Branes and the Deconfinement Transition in 2+1 Dimensions
The supergravity dual to N regular and M fractional D2-branes on the cone
over \mathbb{CP}^3 has a naked singularity in the infrared. One can resolve
this singularity and obtain a regular fractional D2-brane solution dual to a
confining 2+1 dimensional N = 1 supersymmetric field theory. The confining
vacuum of this theory is described by the solution of Cvetic, Gibbons, Lu and
Pope. In this paper, we explore the alternative possibility for resolving the
singularity - the creation of a regular horizon. The black-hole solution we
find corresponds to the deconfined phase of this dual gauge theory in three
dimensions. This solution is derived in perturbation theory in the number of
fractional branes. We argue that there is a first-order deconfinement
transition. Connections to Chern--Simons matter theories, the ABJM proposal and
fractional M2-branes are presented.Comment: v3: analytic solutions are expose
Domain walls in three dimensional gauged supergravity
We explicitly construct two Chern-Simons gauged supergravities in three
dimensions with N=4 and N=8 supersymmetries and non-semisimple gauge groups.
The N=4 theory has scalar manifold with the gauge
group . The theory describes
(1,0) six dimensional supergravity reduced on an SU(2) group manifold. The
equivalent Yang-Mills type gauged supergravity has SO(3) gauge group coupled to
three massive vector fields. The N=8 theory is described by
scalar manifold, and the gauge group is given by
. The theory is a truncation of the gauged N=16 theory with scalar manifold and
can be obtained by an S^7 compactification of type I theory in ten dimensions.
Domain wall solutions of both gauged supergravities are analytically found and
can be uplifted to higher dimensions. These provide domain wall vacua in the
three dimensional gauged supergravity framework which might be useful for the
study of Domain Wall/QFT correspondence.Comment: 19 pages, no figures, typoes and a mistake in a sign corrected,
clarifications on the notations adde
Non-conformal Hydrodynamics in Einstein-dilaton Theory
In the Einestein-dilaton theory with a Liouville potential parameterized by
, we find a Schwarzschild-type black hole solution. This black hole
solution, whose asymptotic geometry is described by the warped metric, is
thermodynamically stable only for . Applying the gauge/gravity
duality, we find that the dual gauge theory represents a non-conformal thermal
system with the equation of state depending on . After turning on the
bulk vector fluctuations with and without a dilaton coupling, we calculate the
charge diffusion constant, which indicates that the life time of the quasi
normal mode decreases with . Interestingly, the vector fluctuation with
the dilaton coupling shows that the DC conductivity increases with temperature,
a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE
- …
