1,499 research outputs found

    Acoustic and optical phonon dynamics from femtosecond time-resolved optical spectroscopy of superconducting iron pnictide Ca(Fe_0.944Co_0.056)_2As_2

    Full text link
    We report temperature evolution of coherently excited acoustic and optical phonon dynamics in superconducting iron pnictide single crystal Ca(Fe_0.944Co_0.056)_2As_2 across the spin density wave transition at T_SDW ~ 85 K and superconducting transition at T_SC ~20 K. Strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range of 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T_SC indicating a coupling of these low energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T ~ 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T_SDW.Comment: 6 pages, 4 figures (revised manuscript

    Ultrafast quasiparticle dynamics in superconducting iron pnictide CaFe1.89Co0.11As2

    Full text link
    Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting CaFe1.89Co0.11As2 single crystal using femtosecond time-resolved pump-probe spectroscopy. The carrier dynamics reflects a three-channel decay of laser deposited energy with characteristic time scales varying from few hundreds of femtoseconds to order of few nanoseconds where the amplitudes and time-constants of the individual electronic relaxation components show significant changes in the vicinity of the spin density wave (T_SDW ~ 85 K) and superconducting (T_SC ~ 20 K) phase transition temperatures. The quasiparticles dynamics in the superconducting state reveals a charge gap with reduced gap value of 2Δ\Delta_0/k_BT_SC ~ 1.8. We have determined the electron-phonon coupling constant \lemda to be ~ 0.14 from the temperature dependent relaxation time in the normal state, a value close to those reported for other types of pnictides. From the peculiar temperature-dependence of the carrier dynamics in the intermediate temperature region between the superconducting and spin density wave phase transitions, we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.Comment: 6 pages, 4 figures (revised manuscript); http://dx.doi.org/10.1016/j.ssc.2013.02.00

    Nanoscale Electronic Order in Iron Pnictides

    Get PDF
    The charge distribution in RFeAs (R=La, Sm) iron pnictides is probed using As NQR. Whereas undoped and optimally-doped/overdoped compounds feature a single charge environment, two charge environments are detected in the underdoped region. Spin- lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point at a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed

    Dilution of the magnetic lattice in the Kitaev candidate α\alpha-RuCl3_3 by Rh3+^{3+} doping

    Get PDF
    Magnetic dilution of a well-established Kitaev candidate system is realized in the substitutional Ru1x_{1-x}Rhx_xCl3_3 series (x=0.020.6x = 0.02-0.6). Optimized syntheses protocols yield uniformly-doped single crystals and polycrystalline powders that are isostructural to the parental α\alpha-RuCl3_3 as per X-ray diffraction. The Rh content xx is accurately determined by the quantitative energy-dispersive X-ray spectroscopy technique with standards. We determine the magnetic phase diagram of Ru1x_{1-x}Rhx_xCl3_3 for in-plane magnetic fields from magnetization and specific-heat measurements as a function of xx and stacking periodicity, and identify the suppression of the magnetic order at x0.2x \approx 0.2 towards a disordered phase, which does not show any clear signature of freezing into a spin glass. Comparing with previous studies on the substitution series Ru1x_{1-x}Irx_xCl3_3, we propose that chemical pressure would contribute to the suppression of magnetic order especially in Ru1x_{1-x}Irx_xCl3_3 and that the zigzag magnetic ground state appears to be relatively robust with respect to the dilution of the Kitaev--Γ\Gamma--Heisenberg magnetic lattice. We also discovered a slight dependence of the magnetic properties on thermal cycling, which would be due to an incomplete structural transition

    A methylated lysine is a switch point for conformational communication in the chaperone Hsp90

    No full text
    Methylation of a conserved lysine in C-terminal domain of the molecular chaperone Hsp90 was shown previously to affect its in vivo function. However, the underlying mechanism remained elusive. Through a combined experimental and computational approach, this study shows that this site is very sensitive to sidechain modifications and crucial for Hsp90 activity in vitro and in vivo. Our results demonstrate that this particular lysine serves as a switch point for the regulation of Hsp90 functions by influencing its conformational cycle, ATPase activity, co-chaperone regulation, and client activation of yeast and human Hsp90. Incorporation of the methylated lysine via genetic code expansion specifically shows that upon modification, the conformational cycle of Hsp90 is altered. Molecular dynamics simulations including the methylated lysine suggest specific conformational changes that are propagated through Hsp90. Thus, methylation of the C-terminal lysine allows a precise allosteric tuning of Hsp90 activity via long distances. Methylation of a lysine residue in Hsp90 is a recently discovered post-translational modification but the mechanistic effects of this modification have remained unknown so far. Here the authors combine biochemical and biophysical approaches, molecular dynamics (MD) simulations and functional experiments with yeast and show that this lysine is a switch point, which specifically modulates conserved Hsp90 functions including co-chaperone regulation and client activation

    Author Correction: A methylated lysine is a switch point for conformational communication in the chaperone Hsp90

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.

    Geometric approach to the dynamic glass transition

    Full text link
    We numerically study the potential energy landscape of a fragile glassy system and find that the dynamic crossover corresponding to the glass transition is actually the effect of an underlying geometric transition caused by a qualitative change in the topological properties of the landscape. Furthermore, we show that the potential energy barriers connecting local glassy minima increase with decreasing energy of the minima, and we relate this behaviour to the fragility of the system. Finally, we analyze the real space structure of activated processes by studying the distribution of particle displacements for local minima connected by simple saddles
    corecore