63,026 research outputs found

    Statistical Self-Similar Properties of Complex Networks

    Get PDF
    It has been shown that many complex networks shared distinctive features, which differ in many ways from the random and the regular networks. Although these features capture important characteristics of complex networks, their applicability depends on the type of networks. To unravel ubiquitous characteristics that complex networks may have in common, we adopt the clustering coefficient as the probability measure, and present a systematic analysis of various types of complex networks from the perspective of statistical self-similarity. We find that the probability distribution of the clustering coefficient is best characterized by the multifractal; moreover, the support of the measure had a fractal dimension. These two features enable us to describe complex networks in a unified way; at the same time, offer unforeseen possibilities to comprehend complex networks.Comment: 11 pages, 4 figure

    Stability boundaries of roll and square convection in binary fluid mixtures with positive separation ratio

    Full text link
    Rayleigh-B\'{e}nard convection in horizontal layers of binary fluid mixtures heated from below with realistic horizontal boundary conditions is studied theoretically using multi-mode Galerkin expansions. For positive separation ratios the main difference between the mixtures and pure fluids lies in the existence of stable three dimensional patterns near onset in a wide range of the parameter space. We evaluated the stationary solutions of roll, crossroll, and square convection and we determined the location of the stability boundaries for many parameter combinations thereby obtaining the Busse balloon for roll and square patterns.Comment: 19 pages + 15 figures, accepted by Journal of Fluid Mechanic

    Track clustering with a quantum annealer for primary vertex reconstruction at hadron colliders

    Full text link
    Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron collider experiments. We use a 2036 qubit D-Wave quantum annealer to perform track clustering in a limited capacity on artificial events where the positions of primary vertices and tracks resemble those measured by the Compact Muon Solenoid experiment at the Large Hadron Collider. The algorithm, which is not a classical-quantum hybrid but relies entirely on quantum annealing, is tested on a variety of event topologies from 2 primary vertices and 10 tracks up to 5 primary vertices and 15 tracks. It is benchmarked against simulated annealing executed on a commercial CPU constrained to the same processor time per anneal as time in the physical annealer, and performance is found to be comparable for small numbers of vertices with an intriguing advantage noted for 2 vertices and 16 tracks

    Probe modeling for millimeter-wave integrated-circuit horn antennas

    Get PDF
    Integrated-circuit probe-excited horn-antenna arrays etched in silicon are well developed. They are a very promising class of antenna arrays for milli-meter and submillimeter applications. Further development of this technology involves integrating mixers and amplifiers into the antenna arrays. In an effort to develop an antenna-mixer array based on the existing technology, various antenna probes inside the pyramidal horns have been examined on scaled model-horns at the microwave frequencies. In this paper, modeling results and design principles of these antenna probes have been presented, which include the resonant impedance, the operating frequency, and the bandwidth of the horn antennas. These measurement results provide a guideline in designing probes for millimeter/submillimeter-wave integrated-circuit horn-antenna-mixer arrays

    Building an IT Taxonomy with Co-occurrence Analysis, Hierarchical Clustering, and Multidimensional Scaling

    Get PDF
    Different information technologies (ITs) are related in complex ways. How can the relationships among a large number of ITs be described and analyzed in a representative, dynamic, and scalable way? In this study, we employed co-occurrence analysis to explore the relationships among 50 information technologies discussed in six magazines over ten years (1998-2007). Using hierarchical clustering and multidimensional scaling, we have found that the similarities of the technologies can be depicted in hierarchies and two-dimensional plots, and that similar technologies can be classified into meaningful categories. The results imply reasonable validity of our approach for understanding technology relationships and building an IT taxonomy. The methodology that we offer not only helps IT practitioners and researchers make sense of numerous technologies in the iField but also bridges two related but thus far largely separate research streams in iSchools - information management and IT management

    Forward Jet Production at small x in Next-to-Leading Order QCD

    Get PDF
    The production of forward jets of transverse energy E_T\simeq Q and large momentum fraction x_jet >> x is calculated in next-to-leading order including consistently direct and resolved virtual photon contributions. The predictions are compared to recent ZEUS and H1 data. Good agreement with the data is found.Comment: 11 pages, 3 eps figues; text in 2.1 clearified, figure 2 slightly changed; version to appear in Phys. Lett.
    corecore