9,068 research outputs found
Implications of non-feasible transformations among icosahedral orbitals
The symmetric group that permutes the six five-fold axes of an
icosahedron is introduced to go beyond the simple rotations that constitute the
icosahedral group . Owing to the correspondence , the
calculation of the Coulomb energies for the icosahedral configurations
based on the sequence can be brought
to bear on Racah's classic theory for the atomic d shell based on . Among the elements of is the kaleidoscope
operator that rotates the weight space of SO(5) by . Its use
explains some puzzling degeneracies in d^3 involving the spectroscopic terms
^2P, ^2F, ^2G and ^2H.Comment: Tentatively scheduled to appear in Physical Preview Letters Apr 5,
99. Revtex, 1 ps figur
A pilot level decision analysis of thermionic reactor development strategy for nuclear electric propulsion
The development policy for thermionic reactors to provide electric propulsion and power for space exploration was analyzed to develop a logical procedure for selecting development alternatives that reflect the technical feasibility, JPL/NASA project objectives, and the economic environment of the project. The partial evolution of a decision model from the underlying philosophy of decision analysis to a deterministic pilot phase is presented, and the general manner in which this decision model can be employed to examine propulsion development alternatives is illustrated
Development of an integrated low-power RF partial discharge detector
This paper presents the results from integrating a low-power partial discharge detector with a wireless sensor node designed for operating as part of an IEEE 802.15.4 sensor network, and applying an on-line classifier capable of classifying partial discharges in real-time. Such a system is of benefit to monitoring engineers as it provides a means to exploit the RF technique using a low-cost device while circumventing the need for any additional cabling associated with new condition monitoring systems. The detector uses a frequency-based technique to differentiate between multiple defects, and has been integrated with a SunSPOT wireless sensor node hosting an agent-based monitoring platform, which includes a data capture agent and rule induction agent trained using experimental data. The results of laboratory system verification are discussed, and the requirements for a fully robust and flexible system are outlined
New methodology for assessing the probability of contaminating Mars
Methodology is proposed to assess the probability that the planet Mars will be contaminated by terrestrial microorganisms aboard a spacecraft. The present NASA methods are extended to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Different types of microbial release are distinguished, and for each release mechanism a probability of growth is computed. Using this new methodology, an assessment was carried out for the 1975 Viking landings on Mars. The resulting probability of contamination for each Viking lander is 6 x 10 to the -6 power, and is amenable to revision as additional information becomes available
More on coupling coefficients for the most degenerate representations of SO(n)
We present explicit closed-form expressions for the general group-theoretical
factor appearing in the alpha-topology of a high-temperature expansion of
SO(n)-symmetric lattice models. This object, which is closely related to
6j-symbols for the most degenerate representation of SO(n), is discussed in
detail.Comment: 9 pages including 1 table, uses IOP macros Update of Introduction and
Discussion, References adde
Assessment of the probability of contaminating Mars
New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth
Scattering and absorption of ultracold atoms by nanotubes
We investigate theoretically how cold atoms, including Bose-Einstein
condensates, are scattered from, or absorbed by nanotubes with a view to
analysing recent experiments. In particular we consider the role of potential
strength, quantum reflection, atomic interactions and tube vibrations on atom
loss rates. Lifshitz theory calculations deliver a significantly stronger
scattering potential than that found in experiment and we discuss possible
reasons for this. We find that the scattering potential for dielectric tubes
can be calculated to a good approximation using a modified pairwise summation
approach, which is efficient and easily extendable to arbitrary geometries.
Quantum reflection of atoms from a nanotube may become a significant factor at
low temperatures, especially for non-metallic tubes. Interatomic interactions
are shown to increase the rate at which atoms are lost to the nanotube and lead
to non-trivial dynamics. Thermal nanotube vibrations do not significantly
increase loss rates or reduce condensate fractions, but lower frequency
oscillations can dramatically heat the cloud.Comment: 7 pages, 4 figure
Low-energy excitations of a linearly Jahn-Teller coupled orbital quintet
The low-energy spectra of the single-mode h x (G+H) linear Jahn-Teller model
is studied by means of exact diagonalization. Both eigenenergies and
photoemission spectral intensities are computed. These spectra are useful to
understand the vibronic dynamics of icosahedral clusters with partly filled
orbital quintet molecular shells, for example C60 positive ions.Comment: 14 pages revte
Chaos and localization in the wavefunctions of complex atoms NdI, PmI and SmI
Wavefunctions of complex lanthanide atoms NdI, PmI and SmI, obtained via
multi-configuration Dirac-Fock method, are analyzed for density of states in
terms of partial densities, strength functions (), number of principal
components () and occupancies (\lan n_\alpha \ran^E) of single
particle orbits using embedded Gaussian orthogonal ensemble of one plus
two-body random matrix ensembles [EGOE(1+2)]. It is seen that density of states
are in general multi-modal, 's exhibit variations as function of the
basis states energy and 's show structures arising from localized
states. The sources of these departures from EGOE(1+2) are investigated by
examining the partial densities, correlations between , and
\lan n_\alpha \ran^E and also by studying the structure of the Hamiltonian
matrices. These studies point out the operation of EGOE(1+2) but at the same
time suggest that weak admixing between well separated configurations should be
incorporated into EGOE(1+2) for more quantitative description of chaos and
localization in NdI, PmI and SmI.Comment: There are 9 figure
- …
