17 research outputs found

    Dlx5 and Dlx6 control uterine adenogenesis during post-natal maturation: Possible consequences for endometriosis

    No full text
    Dlx5 and Dlx6 are two closely associated homeobox genes which code for transcription factors involved in the control of steroidogenesis and reproduction. Inactivation of Dlx5/6 in the mouse results in a Leydig cell defect in the male and in ovarian insufficiency in the female. DLX5/6 are also strongly expressed by the human endometrium but their function in the uterus is unknown. The involvement of DLX5/6 in human uterine pathology is suggested by their strong downregulation in endometriotic lesions and upregulation in endometrioïd adenocarcinomas. We first show that Dlx5/6 expression begins in Müllerian ducts epithelia and persists then in the uterine luminal and glandular epithelia throughout post-natal maturation and in the adult. We then use a new mouse model in which Dlx5 and Dlx6 can be simultaneously inactivated in the endometrium using a Pgrcre/+ allele. Post-natal inactivation of Dlx5/6 in the uterus results in sterility without any obvious ovarian involvement. The uteri of Pgrcre/+; Dlx5/6flox/flox mice present very few uterine glands and numerous abnormally large and branched invaginations of the uterine lumen. In Dlx5/6 mutant uteri, the expression of genes involved in gland formation (Foxa2) and in epithelial remodelling during implantation (Msx1) is significantly reduced. Furthermore, we show that DLX5 is highly expressed in human endometrial glandular epithelium and that its expression is affected in endometriosis. We conclude that Dlx5 and Dlx6 expression determines uterine architecture and adenogenesis and is needed for implantation. Given their importance for female reproduction, DLX5 and DLX6 must be regarded as interesting targets for future clinical research

    Validating RNAi Phenotypes in Drosophila Using a Synthetic RNAi-Resistant Transgene

    Get PDF
    RNA interference (RNAi) is a powerful and widely used approach to investigate gene function, but a major limitation of the approach is the high incidence of non-specific phenotypes that arise due to off-target effects. We previously showed that RNAi-mediated knock-down of pico, which encodes the only member of the MRL family of adapter proteins in Drosophila, resulted in reduction in cell number and size leading to reduced tissue growth. In contrast, a recent study reported that pico knockdown leads to tissue dysmorphology, pointing to an indirect role for pico in the control of wing size. To understand the cause of this disparity we have utilised a synthetic RNAi-resistant transgene, which bears minimal sequence homology to the predicted dsRNA but encodes wild type Pico protein, to reanalyse the RNAi lines used in the two studies. We find that the RNAi lines from different sources exhibit different effects, with one set of lines uniquely resulting in a tissue dysmorphology phenotype when expressed in the developing wing. Importantly, the loss of tissue morphology fails to be complemented by co-overexpression of RNAi-resistant pico suggesting that this phenotype is the result of an off-target effect. This highlights the importance of careful validation of RNAi-induced phenotypes, and shows the potential of synthetic transgenes for their experimental validation

    PNUTS/PP1 Regulates RNAPII-Mediated Gene Expression and Is Necessary for Developmental Growth

    Get PDF
    In multicellular organisms, tight regulation of gene expression ensures appropriate tissue and organismal growth throughout development. Reversible phosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) is critical for the regulation of gene expression states, but how phosphorylation is actively modified in a developmental context remains poorly understood. Protein phosphatase 1 (PP1) is one of several enzymes that has been reported to dephosphorylate the RNAPII CTD. However, PP1's contribution to transcriptional regulation during animal development and the mechanisms by which its activity is targeted to RNAPII have not been fully elucidated. Here we show that the Drosophila orthologue of the PP1 Nuclear Targeting Subunit (dPNUTS) is essential for organismal development and is cell autonomously required for growth of developing tissues. The function of dPNUTS in tissue development depends on its binding to PP1, which we show is targeted by dPNUTS to RNAPII at many active sites of transcription on chromosomes. Loss of dPNUTS function or specific disruption of its ability to bind PP1 results in hyperphosphorylation of the RNAPII CTD in whole animal extracts and on chromosomes. Consistent with dPNUTS being a global transcriptional regulator, we find that loss of dPNUTS function affects the expression of the majority of genes in developing 1st instar larvae, including those that promote proliferative growth. Together, these findings shed light on the in vivo role of the PNUTS-PP1 holoenzyme and its contribution to the control of gene expression during early Drosophila development
    corecore