7,032 research outputs found
Seasonal adjustment of daily data with CAMPLET
In the last decade large data sets have become available, both in terms of the number of time series and with higher frequencies (weekly, daily and even higher). All series may suffer from seasonality, which hides other important fluctuations. Therefore time series are typically seasonally adjusted. However, standard seasonal adjustment methods cannot handle series with higher than monthly frequencies. Recently, Abeln et al. (2019) presented CAMPLET, a new seasonal adjustment method, which does not produce revisions when new observations become available. The aim of this paper is to show the attractiveness of CAMPLET for seasonal adjustment of daily time series. We apply CAMPLET to daily data on the gas system in the Netherlands
On the size and shape of excluded volume polymers confined between parallel plates
A number of recent experiments have provided detailed observations of the
configurations of long DNA strands under nano-to-micrometer sized confinement.
We therefore revisit the problem of an excluded volume polymer chain confined
between two parallel plates with varying plate separation. We show that the
non-monotonic behavior of the overall size of the chain as a function of
plate-separation, seen in computer simulations and reproduced by earlier
theories, can already be predicted on the basis of scaling arguments. However,
the behavior of the size in a plane parallel to the plates, a quantity observed
in recent experiments, is predicted to be monotonic, in contrast to the
experimental findings. We analyze this problem in depth with a mean-field
approach that maps the confined polymer onto an anisotropic Gaussian chain,
which allows the size of the polymer to be determined separately in the
confined and unconfined directions. The theory allows the analytical
construction of a smooth cross-over between the small plate-separation de
Gennes regime and the large plate-separation Flory regime. The results show
good agreement with Langevin dynamics simulations, and confirm the scaling
predictions.Comment: 15 pages, 3 figure
Axiomatic Characterization of the Mean Function on Trees
A mean of a sequence π = (x1, x2, . . . , xk) of elements of a finite metric space (X, d) is an element x for which is minimum. The function Mean whose domain is the set of all finite sequences on X and is defined by Mean(π) = { x | x is a mean of π } is called the mean function on X. In this paper the mean function on finite trees is characterized axiomatically
Survival of the aligned: ordering of the plant cortical microtubule array
The cortical array is a structure consisting of highly aligned microtubules
which plays a crucial role in the characteristic uniaxial expansion of all
growing plant cells. Recent experiments have shown polymerization-driven
collisions between the membrane-bound cortical microtubules, suggesting a
possible mechanism for their alignment. We present both a coarse-grained
theoretical model and stochastic particle-based simulations of this mechanism,
and compare the results from these complementary approaches. Our results
indicate that collisions that induce depolymerization are sufficient to
generate the alignment of microtubules in the cortical array.Comment: 4+ pages, 3 figures v2: significantly revised the exposition of the
analytical model and expanded the discussion on our choice for the collision
outcome probabilities; clarified the scope of the conclusions; numerous
smaller changes throughou
The properties of the Galactic bar implied by gas kinematics in the inner Milky Way
Longitude-velocity (l-V) diagrams of H I and CO gas in the inner Milky Way
have long been known to be inconsistent with circular motion in an axisymmetric
potential. Several lines of evidence suggest that the Galaxy is barred, and gas
flow in a barred potential could be consistent with the observed ``forbidden''
velocities and other features in the data. We compare the H I observations to
l-V diagrams synthesized from 2-D fluid dynamical simulations of gas flows in a
family of barred potentials. The gas flow pattern is very sensitive to the
parameters of the assumed potential, which allows us to discriminate among
models. We present a model that reproduces the outer contour of the H I l-V
diagram reasonably well; this model has a strong bar with a semimajor axis of
3.6 kpc, an axis ratio of approximately 3:1, an inner Lindblad resonance (ILR),
and a pattern speed of 42 km/s/kpc, and matches the data best when viewed from
34\deg to the bar major axis. The behavior of the models, combined with the
constraint that the shocks in the Milky Way bar should resemble those in
external barred galaxies, leads us to conclude that wide ranges of parameter
space are incompatible with the observations. In particular we suggest that the
bar must be fairly strong, must have an ILR, and cannot be too end-on, with the
bar major axis at 35\deg +/- 5\deg to the line of sight. The H I data exhibit
larger forbidden velocities over a wider longitude range than are seen in
molecular gas; this important difference is the reason our favored model
differs so significantly from other recently proposed models.Comment: 23 pages, 14 figures, 1 table, uses emulateapj and psfig, 640 kb.
Submitted to Ap
Magnetic-film atom chip with 10 m period lattices of microtraps for quantum information science with Rydberg atoms
We describe the fabrication and construction of a setup for creating lattices
of magnetic microtraps for ultracold atoms on an atom chip. The lattice is
defined by lithographic patterning of a permanent magnetic film. Patterned
magnetic-film atom chips enable a large variety of trapping geometries over a
wide range of length scales. We demonstrate an atom chip with a lattice
constant of 10 m, suitable for experiments in quantum information science
employing the interaction between atoms in highly-excited Rydberg energy
levels. The active trapping region contains lattice regions with square and
hexagonal symmetry, with the two regions joined at an interface. A structure of
macroscopic wires, cut out of a silver foil, was mounted under the atom chip in
order to load ultracold Rb atoms into the microtraps. We demonstrate
loading of atoms into the square and hexagonal lattice sections simultaneously
and show resolved imaging of individual lattice sites. Magnetic-film lattices
on atom chips provide a versatile platform for experiments with ultracold
atoms, in particular for quantum information science and quantum simulation.Comment: 7 pages, 7 figure
- …