30,228 research outputs found

    Unstable manifolds and Schroedinger dynamics of Ginzburg-Landau vortices

    Full text link
    The time evolution of several interacting Ginzburg-Landau vortices according to an equation of Schroedinger type is approximated by motion on a finite-dimensional manifold. That manifold is defined as an unstable manifold of an auxiliary dynamical system, namely the gradient flow of the Ginzburg-Landau energy functional. For two vortices the relevant unstable manifold is constructed numerically and the induced dynamics is computed. The resulting model provides a complete picture of the vortex motion for arbitrary vortex separation, including well-separated and nearly coincident vortices.Comment: 23 pages amslatex, 5 eps figures, minor typos correcte

    Planck pre-launch status: The HFI instrument, from specification to actual performance

    Get PDF
    Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz−1 THz range. Aims. The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration. Methods. The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques. Results. The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification

    Parameter Estimation from Improved Measurements of the Cosmic Microwave Background from QUaD

    Get PDF
    We evaluate the contribution of cosmic microwave background (CMB) polarization spectra to cosmological parameter constraints. We produce cosmological parameters using high-quality CMB polarization data from the ground-based QUaD experiment and demonstrate for the majority of parameters that there is significant improvement on the constraints obtained from satellite CMB polarization data. We split a multi-experiment CMB data set into temperature and polarization subsets and show that the best-fit confidence regions for the ΛCDM six-parameter cosmological model are consistent with each other, and that polarization data reduces the confidence regions on all parameters. We provide the best limits on parameters from QUaD EE/BB polarization data and we find best-fit parameters from the multi-experiment CMB data set using the optimal pivot scale of k_p = 0.013 Mpc^(–1) to be {h^2Ω_c, h^2Ω_b, H_0, A_s, n_s, τ} = {0.113, 0.0224, 70.6, 2.29 × 10^(–9), 0.960, 0.086}

    Mit GrĂŒnfutter und Tageslicht strahlen HĂŒhnereier anders

    Get PDF
    Mit dem einfachen und schnellen Untersuchungsverfahren der Biophotonenanalyse lassen sich am Ei Unterschiede feststellen, die durch Haltungssystem, FĂŒtterung und Klimafaktoren bedingt sind

    Satisfying the Einstein-Podolsky-Rosen criterion with massive particles

    Get PDF
    In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here, we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 standard deviations below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.Comment: 8 pages, 7 figure

    0.75 atoms improve the clock signal of 10,000 atoms

    Get PDF
    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.Comment: 9 pages, 6 figure

    To green or not to green: Establishing the economic value of green infrastructure investments in The Wicker, Sheffield.

    Get PDF
    Establishing the value of urban green infrastructure resources draws on a complex evaluation of social, economic and ecological influences. As a result planners have found it difficult to develop robust economic arguments to promote investments in urban greening. The Valuing Attractive Landscapes in the Urban Economy (VALUE) project facilitated a trans-national programme of investigations to establish economic values for a range of green infrastructure investments. This paper presents the results of a large-scale willingness to pay (WTP) survey (N: 510) for investments on Blonk Street, The Wicker, Sheffield. Using 3D visualisations of three alternative urban greening scenarios the research addressed the influence of green infrastructure on aesthetic quality, functionality and amenity. The evidence suggests that participants were WTP up ÂŁ10.56 or 2% more in monthly rent or additional mortgage payments to live in locations that have a high quality green infrastructure environment. The survey also examined the relationships between a range of socio-economic factors and WTP for green infrastructure (GI). WTP more rent was associated particularly with those in younger age groups and those with lower educational attainment. The paper concludes that investment in urban GI that is visibly greener, that facilitates access to GI and other amenities and that is perceived to promote multiple functions and benefits on a single site (i.e. multi-functionality) generate higher WTP values. The findings of the study support the wider literature evaluating the economic value of GI which argues that investment in urban greenspace can have a significant impact on local housing and commercial markets where it produces more attractive and functional landscapes
    • 

    corecore