6,238 research outputs found

    Fretting wear of Ti(CxNy) PVD coatings under variable environmental conditions

    Get PDF
    Fretting wear as a specific type of degradation is defined as an oscillatory motion at small amplitude between two nominally stationary solid bodies in mutual contact. Under external stresses the interface is being damaged by debris generation and its successive ejections outside the contact area. A potential protection against fretting damage by means of hard coatings is being offered by different surface engineering techniques. For this study TiC, TiN and TiCN hard coatings manufactured by a PVD method have been selected and tested against smooth polycrystalline alumina ball. A fretting test programme has been carried out at the frequency of 5Hz, 100N normal load, 100µm displacement amplitude and at three values of a relative humidity: 10, 50 and 90% at 295-298K temperature. It turned out that the intensity of wear process was depending not only on loading conditions but on environmental ones as well. A significant impact of RH on wear rate and friction behaviour of the coatings under investigation has been observed. Two different damage mechanisms have been identified and related to the phenomena of debris oxidation and debris adhesion to the counterbody surface. In the latter case the debris deposited onto the surface of the alumina ball lead to a change of stress distribution at the interface and as a result to accelerated wear. In this work experiments with variable relative humidity increasing from 10% to 90% within 1 a single fretting test have been completed. It follows from these experiments that there exists an intermediate value of the RH at which the friction coefficient changes rapidly. Finally a dissipated energy approach has been applied in the work in order to quantify and compare fretting wear rates of different hard coatings

    Spin-Orbit and Tensor Forces in Heavy-quark Light-quark Mesons: Implications of the New Ds state at 2.32 GeV

    Full text link
    We consider the spectroscopy of heavy-quark light-quark mesons with a simple model based on the non-relativistic reduction of vector and scalar exchange between fermions. Four forces are induced: the spin-orbit forces on the light and heavy quark spins, the tensor force, and a spin-spin force. If the vector force is Coulombic, the spin-spin force is a contact interaction, and the tensor force and spin-orbit force on the heavy quark to order 1/m1m21/m_1m_2 are directly proportional. As a result, just two independent parameters characterize these perturbations. The measurement of the masses of three p-wave states suffices to predict the mass of the fourth. This technique is applied to the DsD_s system, where the newly discovered state at 2.32 GeV provides the third measured level, and to the DD system. The mixing of the two JP=1+J^P=1^+ p-wave states is reflected in their widths and provides additional constraints. The resulting picture is at odds with previous expectations and raises new puzzles.Comment: 6 pages, 1 figur

    Relativistic quantum plasma dispersion functions

    Full text link
    Relativistic quantum plasma dispersion functions are defined and the longitudinal and transverse response functions for an electron (plus positron) gas are written in terms of them. The dispersion is separated into Landau-damping, pair-creation and dissipationless regimes. Explicit forms are given for the RQPDFs in the cases of a completely degenerate distribution and a nondegenerate thermal (J\"uttner) distribution. Particular emphasis is placed on the relation between dissipation and dispersion, with the dissipation treated in terms of the imaginary parts of RQPDFs. Comparing the dissipation calculated in this way with the existing treatments leads to the identification of errors in the literature, which we correct. We also comment on a controversy as to whether the dispersion curves in a superdense plasma pass through the region where pair creation is allowed.Comment: 16 pages, 1 figur

    Testing the Noncommutative Standard Model at a Future Photon Collider

    Full text link
    Extensions of the Standard Model of elementary particle physics to noncommutative geometries have been proposed as a low energy limit of string models. Independent of this motivation, one may consider such a model as an effective field theory with higher-dimensional operators containing an antisymmetric rank-two background field. We study the signals of such a Noncommutative Standard Model (NCSM) and analyze the discovery potential of a future photon collider, considering angular distributions in fermion pair production.Comment: 13 pages RevTeX, Feynman diagrams and figures included, references added, typographical errors in Feynman rules corrected (all results remain unchangend, since correct Feynman rules were used in the calculations), to appear in Phys. Rev.

    Spectroscopy of B_c Mesons in the Relativized Quark Model

    Get PDF
    We calculate the spectrum of the charm-beauty mesons using the relativized quark model. Using the wavefunctions from this model we compute the radiative widths of excited c\bar{b} states. The hadronic transition rates between c\bar{b} states are estimated using the Kuang-Yan approach and are combined with the radiative widths to give estimates of the relative branching ratios. These results are combined with production rates at the Tevatron and the LHC to suggest promising signals for excited B_c states. Our results are compared with other models to gauge the reliability of the predictions and point out differences.Comment: 15 pages, 1 fig. uses revtex4. References adde

    On the Absence of an Exponential Bound in Four Dimensional Simplicial Gravity

    Get PDF
    We have studied a model which has been proposed as a regularisation for four dimensional quantum gravity. The partition function is constructed by performing a weighted sum over all triangulations of the four sphere. Using numerical simulation we find that the number of such triangulations containing VV simplices grows faster than exponentially with VV. This property ensures that the model has no thermodynamic limit.Comment: 8 pages, 2 figure

    Retinal Wave Behavior through Activity- Dependent Refractory Periods

    Get PDF
    In the developing mammalian visual system, spontaneous retinal ganglion cell (RGC) activity contributes to and drives several aspects of visual system organization. This spontaneous activity takes the form of spreading patches of synchronized bursting that slowly advance across portions of the retina. These patches are non-repeating and tile the retina in minutes. Several transmitter systems are known to be involved, but the basic mechanism underlying wave production is still not well-understood. We present a model for retinal waves that focuses on acetylcholine mediated waves but whose principles are adaptable to other developmental stages. Its assumptions are that a) spontaneous depolarizations of amacrine cells drive wave activity; b) amacrine cells are locally connected, and c) cells receiving more input during their depolarization are subsequently less responsive and have longer periods between spontaneous depolarizations. The resulting model produces waves with non-repeating borders and randomly distributed initiation points. The wave generation mechanism appears to be chaotic and does not require neural noise to produce this wave behavior. Variations in parameter settings allow the model to produce waves that are similar in size, frequency, and velocity to those observed in several species. Our results suggest that retinal wave behavior results from activity-dependent refractory periods and that the average velocity of retinal waves depends on the duration a cell is excitatory: longer periods of excitation result in slower waves. In contrast to previous studies, we find that a single layer of cells is sufficient for wave generation. The principles described here are very general and may be adaptable to the description of spontaneous wave activity in other areas of the nervous system
    • …
    corecore