32,743 research outputs found

    Shape-preserving and unidirectional frequency conversion using four-wave mixing Bragg scattering

    Get PDF
    In this work, we investigate the properties of four-wave mixing Bragg scattering in a configuration that employs orthogonally polarized pumps in a birefringent waveguide. This configuration enables a large signal conversion bandwidth, and allows strongly unidirectional frequency conversion as undesired Bragg-scattering processes are suppressed by waveguide birefringence. Moreover, we show that this form of four-wave mixing Bragg scattering preserves the (arbitrary) signal pulse shape, even when driven by pulsed pumps.Comment: 11 pages + refs, 5 figure

    Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice

    Full text link
    We demonstrate preparation and detection of an atom number distribution in a one-dimensional atomic lattice with the variance 14-14 dB below the Poissonian noise level. A mesoscopic ensemble containing a few thousand atoms is trapped in the evanescent field of a nanofiber. The atom number is measured through dual-color homodyne interferometry with a pW-power shot noise limited probe. Strong coupling of the evanescent probe guided by the nanofiber allows for a real-time measurement with a precision of ±8\pm 8 atoms on an ensemble of some 10310^3 atoms in a one-dimensional trap. The method is very well suited for generating collective atomic entangled or spin-squeezed states via a quantum non-demolition measurement as well as for tomography of exotic atomic states in a one-dimensional lattice

    Engineering spectrally unentangled photon pairs from nonlinear microring resonators through pump manipulation

    Get PDF
    The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states are quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-resonator structures. In this work, we propose a method for generating spectrally unentangled photon pairs from a standard microring resonator. The method utilizes interference between a primary and a delayed secondary pump pulse to effectively increase the pump spectral width inside the cavity. This enables on-chip generation of heralded single photons with state purities in excess of 99 % without spectral filtering.Comment: 5 pages, 5 figure

    2D orbital-like magnetic order in La2xSrxCuO4{\rm La_{2-x}Sr_xCuO_4}

    Full text link
    In high temperature copper oxides superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We here report the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La2xSrxCuO4{\rm La_{2-x}Sr_xCuO_4} (LSCO) system for x=0.085. In contrast to the previous reports, the magnetic ordering in LSCO is {\it\bf only} short range with an in-plane correlation length of \sim 10 \AA\ and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.Comment: 4 figures, submitted to Phys. Rev. Let

    Formation of antiwaves in gap-junction-coupled chains of neurons

    Full text link
    Using network models consisting of gap junction coupled Wang-Buszaki neurons, we demonstrate that it is possible to obtain not only synchronous activity between neurons but also a variety of constant phase shifts between 0 and \pi. We call these phase shifts intermediate stable phaselocked states. These phase shifts can produce a large variety of wave-like activity patterns in one-dimensional chains and two-dimensional arrays of neurons, which can be studied by reducing the system of equations to a phase model. The 2\pi periodic coupling functions of these models are characterized by prominent higher order terms in their Fourier expansion, which can be varied by changing model parameters. We study how the relative contribution of the odd and even terms affect what solutions are possible, the basin of attraction of those solutions and their stability. These models may be applicable to the spinal central pattern generators of the dogfish and also to the developing neocortex of the neonatal rat

    Electric Polarizability of Neutral Hadrons from Lattice QCD

    Full text link
    By simulating a uniform electric field on a lattice and measuring the change in the rest mass, we calculate the electric polarizability of neutral mesons and baryons using the methods of quenched lattice QCD. Specifically, we measure the electric polarizability coefficient from the quadratic response to the electric field for 10 particles: the vector mesons ρ0\rho^0 and K0K^{*0}; the octet baryons n, Σ0\Sigma^0, Λo0\Lambda_{o}^{0}, Λs0\Lambda_{s}^{0}, and Ξ0\Xi^0; and the decouplet baryons Δ0\Delta^0, Σ0\Sigma^{*0}, and Ξ0\Xi^{*0}. Independent calculations using two fermion actions were done for consistency and comparison purposes. One calculation uses Wilson fermions with a lattice spacing of a=0.10a=0.10 fm. The other uses tadpole improved L\"usher-Weiss gauge fields and clover quark action with a lattice spacing a=0.17a=0.17 fm. Our results for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure

    Instrumental vetoes for transient gravitational-wave triggers using noise-coupling models: The bilinear-coupling veto

    Get PDF
    LIGO and Virgo recently completed searches for gravitational waves at their initial target sensitivities, and soon Advanced LIGO and Advanced Virgo will commence observations with even better capabilities. In the search for short duration signals, such as coalescing compact binary inspirals or "burst" events, noise transients can be problematic. Interferometric gravitational-wave detectors are highly complex instruments, and, based on the experience from the past, the data often contain a large number of noise transients that are not easily distinguishable from possible gravitational-wave signals. In order to perform a sensitive search for short-duration gravitational-wave signals it is important to identify these noise artifacts, and to "veto" them. Here we describe such a veto, the bilinear-coupling veto, that makes use of an empirical model of the coupling of instrumental noise to the output strain channel of the interferometric gravitational-wave detector. In this method, we check whether the data from the output strain channel at the time of an apparent signal is consistent with the data from a bilinear combination of auxiliary channels. We discuss the results of the application of this veto on recent LIGO data, and its possible utility when used with data from Advanced LIGO and Advanced Virgo.Comment: Minor changes; To appear in Phys. Rev.

    Correlations of record events as a test for heavy-tailed distributions

    Full text link
    A record is an entry in a time series that is larger or smaller than all previous entries. If the time series consists of independent, identically distributed random variables with a superimposed linear trend, record events are positively (negatively) correlated when the tail of the distribution is heavier (lighter) than exponential. Here we use these correlations to detect heavy-tailed behavior in small sets of independent random variables. The method consists of converting random subsets of the data into time series with a tunable linear drift and computing the resulting record correlations.Comment: Revised version, to appear in Physical Review Letter

    Ultraviolet downconverting phosphor for use with silicon CCD imagers

    Get PDF
    The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be ~20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 X 800 CCD coated with coronene is presented
    corecore