279 research outputs found

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaginal candidiasis is a frequent and common distressing disease affecting up to 75% of the women of fertile age; most of these women have recurrent episodes. Essential oils from aromatic plants have been shown to have antimicrobial and antifungal activities. This study was aimed at assessing the anti-fungal activity of essential oil from <it>Mentha suaveolens </it>(EOMS) in an experimental infection of vaginal candidiasis.</p> <p>Methods</p> <p>The <it>in vitro </it>and <it>in vivo </it>activity of EOMS was assessed. The <it>in vitro </it>activity was evaluated under standard CLSI methods, and the <it>in vivo </it>analysis was carried out by exploiting a novel, non-invasive model of vaginal candidiasis in mice based on an <it>in vivo </it>imaging technique.</p> <p>Differences between essential oil treated and saline treated mice were evaluated by the non-parametric Mann-Whitney U-test. Viable count data from a time kill assay and yeast and hyphae survival test were compared using the Student's t-test (two-tailed).</p> <p>Results</p> <p>Our main findings were: i) EOMS shows potent candidastatic and candidacidal activity in an <it>in vitro </it>experimental system; ii) EOMS gives a degree of protection against vaginal candidiasis in an <it>in vivo </it>experimental system.</p> <p>Conclusions</p> <p>This study shows for the first time that the essential oil of a Moroccan plant <it>Mentha suaveolens </it>is candidastatic and candidacidal <it>in vitro</it>, and has a degree of anticandidal activity in a model of vaginal infection, as demonstrated in an <it>in vivo </it>monitoring imaging system. We conclude that our findings lay the ground for further, more extensive investigations to identify the active EOMS component(s), promising in the therapeutically problematic setting of chronic vaginal candidiasis in humans.</p

    Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)

    Get PDF
    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds

    Optimal Capital Income Taxation with Tax Evasion

    Get PDF
    The paper discusses the applicability of optimal taxation theory to source-based capital incomes when significant tax evasion is observed. Without tax evasion a modified Ramsey Rule may reduce distortions brought by international capital mobility, leading to levying differentiated tax rates in domestic sectors inversely proportioned to observed elasticities in terms of capital mobility. The introduction of tax evasion brings additional complexity. The viability of optimal tax rates à la Ramsey is explored, and additional requirement (namely that tax evasion is either very low or very homogeneous) are shown to be necessary in order to allow policy-makers to obtain the tax rates minimizing total excess burden. Results are also provided to solve the optimal taxation objective when tax evasion is a relevant phenomenon and is not homogeneous throughout domestic sectors

    Fungal vaccines and immunotherapeutics: current concepts and future challenges

    Get PDF
    Purpose of review The remarkable advances in modern medicine have paradoxically resulted in a rapidly expanding population of immunocompromised patients displaying extreme susceptibility to life-threatening fungal infections. There are currently no licensed vaccines, and the prophylaxis and therapy of fungal infections in at-risk individuals remains challenging, contributing to undesirable mortality and morbidity rates. The design of successful antifungal preventive approaches has been hampered by an insufficient understanding of the dynamics of the host-fungus interaction and the mechanisms that underlie heterogenous immune responses to vaccines and immunotherapy. Recent findings Recent advances in proteomics and glycomics have contributed to the identification of candidate antigens for use in subunit vaccines, novel adjuvants, and delivery systems to boost the efficacy of protective vaccination responses that are becoming available, and several targets are being exploited in immunotherapeutic approaches. Summary We review some of the emerging concepts as well as the inherent challenges to the development of fungal vaccines and immunotherapies to protect at-risk individuals.ThisworkwassupportedbytheNorthernPortugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundação para a Ciência e Tecnologia (FCT) (contracts IF/00735/ 2014 to A.C., and SFRH/BPD/96176/2013 to C.C).info:eu-repo/semantics/publishedVersio

    Candida albicans Isolates from the Gut of Critically Ill Patients Respond to Phosphate Limitation by Expressing Filaments and a Lethal Phenotype

    Get PDF
    Candida albicans is an opportunistic pathogen that proliferates in the intestinal tract of critically ill patients where it continues to be a major cause of infectious-related mortality. The precise cues that shift intestinal C. albicans from its ubiquitous indolent colonizing yeast form to an invasive and lethal filamentous form remain unknown. We have previously shown that severe phosphate depletion develops in the intestinal tract during extreme physiologic stress and plays a major role in shifting intestinal Pseudomonas aeruginosa to express a lethal phenotype via conserved phosphosensory-phosphoregulatory systems. Here we studied whether phosphate dependent virulence expression could be similarly demonstrated for C. albicans. C. albicans isolates from the stool of critically ill patients and laboratory prototype strains (SC5314, BWP17, SN152) were evaluated for morphotype transformation and lethality against C. elegans and mice during exposure to phosphate limitation. Isolates ICU1 and ICU12 were able to filament and kill C. elegans in a phosphate dependent manner. In a mouse model of intestinal phosphate depletion (30% hepatectomy), direct intestinal inoculation of C. albicans caused mortality that was prevented by oral phosphate supplementation. Prototype strains displayed limited responses to phosphate limitation; however, the pho4Δ mutant displayed extensive filamentation during low phosphate conditions compared to its isogenic parent strain SN152, suggesting that mutation in the transcriptional factor Pho4p may sensitize C. albicans to phosphate limitation. Extensive filamentation was also observed in strain ICU12 suggesting that this strain is also sensitized to phosphate limitation. Analysis of the sequence of PHO4 in strain ICU12, its transcriptional response to phosphate limitation, and phosphatase assays confirmed that ICU12 demonstrates a profound response to phosphate limitation. The emergence of strains of C. albicans with marked responsiveness to phosphate limitation may represent a fitness adaptation to the complex and nutrient scarce environment typical of the gut of a critically ill patient

    N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans

    Get PDF
    To mate, the fungal pathogen Candida albicans must undergo homozygosis at the mating-type locus and then switch from the white to opaque phenotype. Paradoxically, opaque cells were found to be unstable at physiological temperature, suggesting that mating had little chance of occurring in the host, the main niche of C. albicans. Recently, however, it was demonstrated that high levels of CO2, equivalent to those found in the host gastrointestinal tract and select tissues, induced the white to opaque switch at physiological temperature, providing a possible resolution to the paradox. Here, we demonstrate that a second signal, N-acetylglucosamine (GlcNAc), a monosaccharide produced primarily by gastrointestinal tract bacteria, also serves as a potent inducer of white to opaque switching and functions primarily through the Ras1/cAMP pathway and phosphorylated Wor1, the gene product of the master switch locus. Our results therefore suggest that signals produced by bacterial co-members of the gastrointestinal tract microbiota regulate switching and therefore mating of C. albicans
    corecore