3,064 research outputs found
Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K
A quantum degenerate, dilute gas mixture of bosonic and fermionic atoms was
produced using 87Rb and 40K. The onset of degeneracy was confirmed by observing
the spatial distribution of the gases after time-of-flight expansion. Further,
the magnitude of the interspecies scattering length between the doubly spin
polarized states of 87Rb and 40K, |a_RbK|, was determined from
cross-dimensional thermal relaxation. The uncertainty in this collision
measurement was greatly reduced by taking the ratio of interspecies and
intraspecies relaxation rates, yielding |a_RbK| = 250 +/- 30 a_0, which is a
lower value than what was reported in [M. Modugno et al., Phys. Rev. A 68,
043626 (2003)]. Using the value for |a_RbK| reported here, current T=0 theory
would predict a threshold for mechanical instability that is inconsistent with
the experimentally observed onset for sudden loss of fermions in [G. Modugno et
al., Science 297, 2240 (2002)].Comment: RevTeX4 + 4 eps figures; Replaced with published versio
Observation of Heteronuclear Feshbach Resonances in a Bose-Fermi Mixture
Three magnetic-field induced heteronuclear Feshbach resonances were
identified in collisions between bosonic 87Rb and fermionic 40K atoms in their
absolute ground states. Strong inelastic loss from an optically trapped mixture
was observed at the resonance positions of 492, 512, and 543 +/- 2 G. The
magnetic-field locations of these resonances place a tight constraint on the
triplet and singlet cross-species scattering lengths, yielding -281 +/- 15 Bohr
and -54 +/- 12 Bohr, respectively. The width of the loss feature at 543 G is
3.7 +/- 1.5 G wide; this broad Feshbach resonance should enable experimental
control of the interspecies interactions.Comment: revtex4 + 5 EPS figure
Developing and implementing an integrated delirium prevention system of care:a theory driven, participatory research study
Background: Delirium is a common complication for older people in hospital. Evidence suggests that delirium incidence in hospital may be reduced by about a third through a multi-component intervention targeted at known modifiable risk factors. We describe the research design and conceptual framework underpinning it that informed the development of a novel delirium prevention system of care for acute hospital wards. Particular focus of the study was on developing an implementation process aimed at embedding practice change within routine care delivery. Methods: We adopted a participatory action research approach involving staff, volunteers, and patient and carer representatives in three northern NHS Trusts in England. We employed Normalization Process Theory to explore knowledge and ward practices on delirium and delirium prevention. We established a Development Team in each Trust comprising senior and frontline staff from selected wards, and others with a potential role or interest in delirium prevention. Data collection included facilitated workshops, relevant documents/records, qualitative one-to-one interviews and focus groups with multiple stakeholders and observation of ward practices. We used grounded theory strategies in analysing and synthesising data. Results: Awareness of delirium was variable among staff with no attention on delirium prevention at any level; delirium prevention was typically neither understood nor perceived as meaningful. The busy, chaotic and challenging ward life rhythm focused primarily on diagnostics, clinical observations and treatment. Ward practices pertinent to delirium prevention were undertaken inconsistently. Staff welcomed the possibility of volunteers being engaged in delirium prevention work, but existing systems for volunteer support were viewed as a barrier. Our evolving conception of an integrated model of delirium prevention presented major implementation challenges flowing from minimal understanding of delirium prevention and securing engagement of volunteers alongside practice change. The resulting Prevention of Delirium (POD) Programme combines a multi-component delirium prevention and implementation process, incorporating systems and mechanisms to introduce and embed delirium prevention into routine ward practices. Conclusions: Although our substantive interest was in delirium prevention, the conceptual and methodological strategies pursued have implications for implementing and sustaining practice and service improvements more broadly
Cerenkov-like radiation in a binary Schr{\"o}dinger flow past an obstacle
We consider the dynamics of two coupled miscible Bose-Einstein condensates,
when an obstacle is dragged through them. The existence of two different speeds
of sound provides the possibility for three dynamical regimes: when both
components are subcritical, we do not observe nucleation of coherent
structures; when both components are supercritical they both form dark solitons
in one dimension (1D) and vortices or rotating vortex dipoles in two dimensions
(2D); in the intermediate regime, we observe the nucleation of a structure in
the form of a dark-antidark soliton in 1D; subcritical component; the 2D analog
of such a structure, a vortex-lump, is also observed.Comment: 4 pages, 4 figures, submitted to Phys Rev
Ideal Quantum Gases in D-dimensional Space and Power-law Potentials
We investigate ideal quantum gases in D-dimensional space and confined in a
generic external potential by using the semiclassical approximation. In
particular, we derive density of states, density profiles and critical
temperatures for Fermions and Bosons trapped in isotropic power-law potentials.
Form such results, one can easily obtain those of quantum gases in a rigid box
and in a harmonic trap. Finally, we show that the Bose-Einstein condensation
can set up in a confining power-law potential if and only if ,
where is the space dimension and is the power-law exponent.Comment: 18 pages, Latex, to be published in Journal of Mathematical Physic
Enhancing capacity of coherent optical information storage and transfer in a Bose-Einstein condensate
Coherent optical information storage capacity of an atomic Bose-Einstein
condensate is examined. Theory of slow light propagation in atomic clouds is
generalized to short pulse regime by taking into account group velocity
dispersion. It is shown that the number of stored pulses in the condensate can
be optimized for a particular coupling laser power, temperature and interatomic
interaction strength. Analytical results are derived for semi-ideal model of
the condensate using effective uniform density zone approximation. Detailed
numerical simulations are also performed. It is found that axial density
profile of the condensate protects the pulse against the group velocity
dispersion. Furthermore, taking into account finite radial size of the
condensate, multi-mode light propagation in atomic Bose-Einstein condensate is
investigated. The number of modes that can be supported by a condensate is
found. Single mode condition is determined as a function of experimentally
accessible parameters including trap size, temperature, condensate number
density and scattering length. Quantum coherent atom-light interaction schemes
are proposed for enhancing multi-mode light propagation effects.Comment: 12pages. Laser Physics, in pres
Vortices in a Bose-Einstein condensate confined by an optical lattice
We investigate the dynamics of vortices in repulsive Bose-Einstein
condensates in the presence of an optical lattice (OL) and a parabolic magnetic
trap. The dynamics is sensitive to the phase of the OL potential relative to
the magnetic trap, and depends less on the OL strength. For the cosinusoidal OL
potential, a local minimum is generated at the trap's center, creating a stable
equilibrium for the vortex, while in the case of the sinusoidal potential, the
vortex is expelled from the center, demonstrating spiral motion. Cases where
the vortex is created far from the trap's center are also studied, revealing
slow outward-spiraling drift. Numerical results are explained in an analytical
form by means of a variational approximation. Finally, motivated by a discrete
model (which is tantamount to the case of the strong OL lattice), we present a
novel type of vortex consisting of two pairs of anti-phase solitons.Comment: 10 pages, 6 figure
Dynamics of Fermionic Four-Wave Mixing
We study the dynamics of a beam of fermions diffracted off a density grating
formed by fermionic atoms in the limit of a large grating. An exact description
of the system in terms of particle-hole operators is developed. We use a
combination of analytical and numerical methods to quantitatively explore the
Raman-Nath and the Bragg regimes of diffraction. We discuss the limits in
diffraction efficiency resulting from the dephasing of the grating due the
distribution of energy states occupied by the fermions. We propose several
methods to overcome these limits, including the novel technique of ``atom
echoes''.Comment: 8 pages, 7 figure
Rotating Bose gas with hard-core repulsion in a quasi-2D harmonic trap: vortices in BEC
We consider a gas of N(=6, 10, 15) Bose particles with hard-core repulsion,
contained in a quasi-2D harmonic trap and subjected to an overall angular
velocity about the z-axis. Exact diagonalization of the
many-body Hamiltonian matrix in given subspaces of the total (quantized)
angular momentum L, with (e.g. for L=N=15, n =240782)
was carried out using Davidson's algorithm. The many-body variational ground
state wavefunction, as also the corresponding energy and the reduced
one-particle density-matrix were calculated. With the usual identification of
as the Lagrange multiplier associated with L for a rotating
system, the phase diagram (or the stability line) was determined
that gave a number of critical angular velocities at which the ground state angular momentum and the associated
condensate fraction undergo abrupt jumps.
A number of (total) angular momentum states were found to be stable at
successively higher critical angular velocities $\Omega_{{\bf c}i}, \
i=1,2,3,...L_{z}>N\Omega_{{\bf c}i}_{z}(\sim 4)$ orders of magnitude in the moderately to the weakly
interacting regime.Comment: Revtex, 11 pages, 1 table as ps file, 4 figures as ps file
How to observe the Efimov effect
We propose to observe the Efimov effect experimentally by applying an
external electric field on atomic three-body systems. We first derive the
lowest order effective two-body interaction for two spin zero atoms in the
field. Then we solve the three-body problem and search for the extreme
spatially extended Efimov states. We use helium trimers as an illustrative
numerical example and estimate the necessary field strength to be less than 2.7
V/angstrom.Comment: 4 pages, 2 postscript figures, psfig.sty, revte
- …
