3,064 research outputs found

    Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K

    Full text link
    A quantum degenerate, dilute gas mixture of bosonic and fermionic atoms was produced using 87Rb and 40K. The onset of degeneracy was confirmed by observing the spatial distribution of the gases after time-of-flight expansion. Further, the magnitude of the interspecies scattering length between the doubly spin polarized states of 87Rb and 40K, |a_RbK|, was determined from cross-dimensional thermal relaxation. The uncertainty in this collision measurement was greatly reduced by taking the ratio of interspecies and intraspecies relaxation rates, yielding |a_RbK| = 250 +/- 30 a_0, which is a lower value than what was reported in [M. Modugno et al., Phys. Rev. A 68, 043626 (2003)]. Using the value for |a_RbK| reported here, current T=0 theory would predict a threshold for mechanical instability that is inconsistent with the experimentally observed onset for sudden loss of fermions in [G. Modugno et al., Science 297, 2240 (2002)].Comment: RevTeX4 + 4 eps figures; Replaced with published versio

    Observation of Heteronuclear Feshbach Resonances in a Bose-Fermi Mixture

    Full text link
    Three magnetic-field induced heteronuclear Feshbach resonances were identified in collisions between bosonic 87Rb and fermionic 40K atoms in their absolute ground states. Strong inelastic loss from an optically trapped mixture was observed at the resonance positions of 492, 512, and 543 +/- 2 G. The magnetic-field locations of these resonances place a tight constraint on the triplet and singlet cross-species scattering lengths, yielding -281 +/- 15 Bohr and -54 +/- 12 Bohr, respectively. The width of the loss feature at 543 G is 3.7 +/- 1.5 G wide; this broad Feshbach resonance should enable experimental control of the interspecies interactions.Comment: revtex4 + 5 EPS figure

    Developing and implementing an integrated delirium prevention system of care:a theory driven, participatory research study

    Get PDF
    Background: Delirium is a common complication for older people in hospital. Evidence suggests that delirium incidence in hospital may be reduced by about a third through a multi-component intervention targeted at known modifiable risk factors. We describe the research design and conceptual framework underpinning it that informed the development of a novel delirium prevention system of care for acute hospital wards. Particular focus of the study was on developing an implementation process aimed at embedding practice change within routine care delivery. Methods: We adopted a participatory action research approach involving staff, volunteers, and patient and carer representatives in three northern NHS Trusts in England. We employed Normalization Process Theory to explore knowledge and ward practices on delirium and delirium prevention. We established a Development Team in each Trust comprising senior and frontline staff from selected wards, and others with a potential role or interest in delirium prevention. Data collection included facilitated workshops, relevant documents/records, qualitative one-to-one interviews and focus groups with multiple stakeholders and observation of ward practices. We used grounded theory strategies in analysing and synthesising data. Results: Awareness of delirium was variable among staff with no attention on delirium prevention at any level; delirium prevention was typically neither understood nor perceived as meaningful. The busy, chaotic and challenging ward life rhythm focused primarily on diagnostics, clinical observations and treatment. Ward practices pertinent to delirium prevention were undertaken inconsistently. Staff welcomed the possibility of volunteers being engaged in delirium prevention work, but existing systems for volunteer support were viewed as a barrier. Our evolving conception of an integrated model of delirium prevention presented major implementation challenges flowing from minimal understanding of delirium prevention and securing engagement of volunteers alongside practice change. The resulting Prevention of Delirium (POD) Programme combines a multi-component delirium prevention and implementation process, incorporating systems and mechanisms to introduce and embed delirium prevention into routine ward practices. Conclusions: Although our substantive interest was in delirium prevention, the conceptual and methodological strategies pursued have implications for implementing and sustaining practice and service improvements more broadly

    Cerenkov-like radiation in a binary Schr{\"o}dinger flow past an obstacle

    Get PDF
    We consider the dynamics of two coupled miscible Bose-Einstein condensates, when an obstacle is dragged through them. The existence of two different speeds of sound provides the possibility for three dynamical regimes: when both components are subcritical, we do not observe nucleation of coherent structures; when both components are supercritical they both form dark solitons in one dimension (1D) and vortices or rotating vortex dipoles in two dimensions (2D); in the intermediate regime, we observe the nucleation of a structure in the form of a dark-antidark soliton in 1D; subcritical component; the 2D analog of such a structure, a vortex-lump, is also observed.Comment: 4 pages, 4 figures, submitted to Phys Rev

    Ideal Quantum Gases in D-dimensional Space and Power-law Potentials

    Full text link
    We investigate ideal quantum gases in D-dimensional space and confined in a generic external potential by using the semiclassical approximation. In particular, we derive density of states, density profiles and critical temperatures for Fermions and Bosons trapped in isotropic power-law potentials. Form such results, one can easily obtain those of quantum gases in a rigid box and in a harmonic trap. Finally, we show that the Bose-Einstein condensation can set up in a confining power-law potential if and only if D/2+D/n>1{D/2}+{D/n}>1, where DD is the space dimension and nn is the power-law exponent.Comment: 18 pages, Latex, to be published in Journal of Mathematical Physic

    Enhancing capacity of coherent optical information storage and transfer in a Bose-Einstein condensate

    Full text link
    Coherent optical information storage capacity of an atomic Bose-Einstein condensate is examined. Theory of slow light propagation in atomic clouds is generalized to short pulse regime by taking into account group velocity dispersion. It is shown that the number of stored pulses in the condensate can be optimized for a particular coupling laser power, temperature and interatomic interaction strength. Analytical results are derived for semi-ideal model of the condensate using effective uniform density zone approximation. Detailed numerical simulations are also performed. It is found that axial density profile of the condensate protects the pulse against the group velocity dispersion. Furthermore, taking into account finite radial size of the condensate, multi-mode light propagation in atomic Bose-Einstein condensate is investigated. The number of modes that can be supported by a condensate is found. Single mode condition is determined as a function of experimentally accessible parameters including trap size, temperature, condensate number density and scattering length. Quantum coherent atom-light interaction schemes are proposed for enhancing multi-mode light propagation effects.Comment: 12pages. Laser Physics, in pres

    Vortices in a Bose-Einstein condensate confined by an optical lattice

    Get PDF
    We investigate the dynamics of vortices in repulsive Bose-Einstein condensates in the presence of an optical lattice (OL) and a parabolic magnetic trap. The dynamics is sensitive to the phase of the OL potential relative to the magnetic trap, and depends less on the OL strength. For the cosinusoidal OL potential, a local minimum is generated at the trap's center, creating a stable equilibrium for the vortex, while in the case of the sinusoidal potential, the vortex is expelled from the center, demonstrating spiral motion. Cases where the vortex is created far from the trap's center are also studied, revealing slow outward-spiraling drift. Numerical results are explained in an analytical form by means of a variational approximation. Finally, motivated by a discrete model (which is tantamount to the case of the strong OL lattice), we present a novel type of vortex consisting of two pairs of anti-phase solitons.Comment: 10 pages, 6 figure

    Dynamics of Fermionic Four-Wave Mixing

    Full text link
    We study the dynamics of a beam of fermions diffracted off a density grating formed by fermionic atoms in the limit of a large grating. An exact description of the system in terms of particle-hole operators is developed. We use a combination of analytical and numerical methods to quantitatively explore the Raman-Nath and the Bragg regimes of diffraction. We discuss the limits in diffraction efficiency resulting from the dephasing of the grating due the distribution of energy states occupied by the fermions. We propose several methods to overcome these limits, including the novel technique of ``atom echoes''.Comment: 8 pages, 7 figure

    Rotating Bose gas with hard-core repulsion in a quasi-2D harmonic trap: vortices in BEC

    Full text link
    We consider a gas of N(=6, 10, 15) Bose particles with hard-core repulsion, contained in a quasi-2D harmonic trap and subjected to an overall angular velocity Ω\Omega about the z-axis. Exact diagonalization of the n×nn\times n many-body Hamiltonian matrix in given subspaces of the total (quantized) angular momentum Lz_{z}, with n105n\sim 10^{5}(e.g. for Lz_{z}=N=15, n =240782) was carried out using Davidson's algorithm. The many-body variational ground state wavefunction, as also the corresponding energy and the reduced one-particle density-matrix were calculated. With the usual identification of Ω\Omega as the Lagrange multiplier associated with Lz_{z} for a rotating system, the LzΩL_{z}-\Omega phase diagram (or the stability line) was determined that gave a number of critical angular velocities Ωci,i=1,2,3,...,\Omega_{{\bf c}i}, i=1,2,3,... , at which the ground state angular momentum and the associated condensate fraction undergo abrupt jumps. A number of (total) angular momentum states were found to be stable at successively higher critical angular velocities $\Omega_{{\bf c}i}, \ i=1,2,3,...foragivenN.For for a given N. For L_{z}>N,thecondensatewasstronglydepleted.Thecritical, the condensate was strongly depleted. The critical \Omega_{{\bf c}i}values,however,decreasedwithincreasinginteractionstrengthaswellastheparticlenumber,andweresystematicallygreaterthanthenonvariationalYraststatevaluesforthesinglevortexstatewithL values, however, decreased with increasing interaction strength as well as the particle number, and were systematically greater than the non-variational Yrast-state values for the single vortex state with L_{z}=N.Wehavealsoobservedthatthecondensatefractionforthesinglevortexstate(asalsoforthehighervortexstates)didnotchangesignificantlyevenasthe2bodyinteractionstrengthwasvariedoverseveral =N. We have also observed that the condensate fraction for the single vortex state (as also for the higher vortex states) did not change significantly even as the 2-body interaction strength was varied over several (\sim 4)$ orders of magnitude in the moderately to the weakly interacting regime.Comment: Revtex, 11 pages, 1 table as ps file, 4 figures as ps file

    How to observe the Efimov effect

    Full text link
    We propose to observe the Efimov effect experimentally by applying an external electric field on atomic three-body systems. We first derive the lowest order effective two-body interaction for two spin zero atoms in the field. Then we solve the three-body problem and search for the extreme spatially extended Efimov states. We use helium trimers as an illustrative numerical example and estimate the necessary field strength to be less than 2.7 V/angstrom.Comment: 4 pages, 2 postscript figures, psfig.sty, revte
    corecore