26 research outputs found

    New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal carcinoma is one of the major causes of morbidity and mortality in the Western World. Novel therapeutic approaches are needed for colorectal carcinoma. Curcumin, the active component and yellow pigment of turmeric, has been reported to have several anti-cancer activities including anti-proliferation, anti-invasion, and anti-angiogenesis. Clinical trials have suggested that curcumin may serve as a potential preventive or therapeutic agent for colorectal cancer.</p> <p>Methods</p> <p>We compared the inhibitory effects of curcumin and novel structural analogues, GO-Y030, FLLL-11, and FLLL-12, in three independent human colorectal cancer cell lines, SW480, HT-29, and HCT116. MTT cell viability assay was used to examine the cell viability/proliferation and western blots were used to determine the level of PARP cleavages. Half-Maximal inhibitory concentrations (IC<sub>50</sub>) were calculated using Sigma Plot 9.0 software.</p> <p>Results</p> <p>Curcumin inhibited cell viability in all three of the human colorectal cancer cell lines studied with IC<sub>50 </sub>values ranging between 10.26 μM and 13.31 μM. GO-Y030, FLLL-11, and FLLL-12 were more potent than curcumin in the inhibition of cell viability in these three human colorectal cancer cell lines with IC<sub>50 </sub>values ranging between 0.51 μM and 4.48 μM. In addition, FLLL-11 and FLLL-12 exhibit low toxicity to WI-38 normal human lung fibroblasts with an IC-50 value greater than 1,000 μM. GO-Y030, FLLL-11, and FLLL-12 are also more potent than curcumin in the induction of apoptosis, as evidenced by cleaved PARP and cleaved caspase-3 in all three human colorectal cancer cell lines studied.</p> <p>Conclusion</p> <p>The results indicate that the three curcumin analogues studied exhibit more potent inhibitory activity than curcumin in human colorectal cancer cells. Thus, they may have translational potential as chemopreventive or therapeutic agents for colorectal carcinoma.</p

    LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model

    Get PDF
    Persistent activation of the signal transducer and activator of transcription 3 (STAT3) signalling has been linked to oncogenesis and the development of chemotherapy resistance in glioblastoma and other cancers. Inhibition of the STAT3 pathway thus represents an attractive therapeutic approach for cancer. In this study, we investigated the inhibitory effects of a small molecule compound known as LLL-3, which is a structural analogue of the earlier reported STAT3 inhibitor, STA-21, on the cell viability of human glioblastoma cells, U87, U373, and U251 expressing constitutively activated STAT3. We also investigated the inhibitory effects of LLL-3 on U87 glioblastoma cell growth in a mouse tumour model as well as the impact it had on the survival time of the treated mice. We observed that LLL-3 inhibited STAT3-dependent transcriptional and DNA binding activities. LLL-3 also inhibited viability of U87, U373, and U251 glioblastoma cells as well as induced apoptosis of these glioblastoma cell lines as evidenced by increased poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavages. Furthermore, the U87 glioblastoma tumour-bearing mice treated with LLL-3 exhibited prolonged survival relative to vehicle-treated mice (28.5 vs 16 days) and had smaller intracranial tumours and no evidence of contralateral invasion. These results suggest that LLL-3 may be a potential therapeutic agent in the treatment of glioblastoma with constitutive STAT3 activation. Originally published in British Journal of Cancer 2009 Vol. 110, No.

    STAT3 can be activated through paracrine signaling in breast epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood.</p> <p>Methods</p> <p>Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis.</p> <p>Results</p> <p>Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells.</p> <p>Conclusion</p> <p>These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with cell proliferation. Understanding how IL-6 and other soluble factors may lead to STAT3 activation via the tumor microenvironment will provide new therapeutic regimens for breast carcinomas and other cancers with elevated p-STAT3 levels.</p

    Resveratrol Inhibits Growth of Orthotopic Pancreatic Tumors through Activation of FOXO Transcription Factors

    Get PDF
    BACKGROUND: The forkhead transcription factors of the O class (FOXO) play a direct role in cellular proliferation, oxidative stress response, and tumorigenesis. The objectives of this study were to examine whether FOXOs regulate antitumor activities of resveratrol in pancreatic cancer cells in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Pancreatic cancer cell lines were treated with resveratrol. Cell viability, colony formation, apoptosis and cell cycle were measured by XTT, soft agar, TUNEL and flow cytometry assays, respectively. FOXO nuclear translocation, DNA binding and transcriptional activities were measured by fluorescence technique, gelshift and luciferase assay, respectively. Mice were orthotopically implanted with PANC1 cells and orally gavaged with resveratrol. The components of PI3K and ERK pathways, FOXOs and their target gene expressions were measured by the Western blot analysis. Resveratrol inhibited cell viability and colony formations, and induced apoptosis through caspase-3 activation in four pancreatic cancer cell lines (PANC-1, MIA PaCa-2, Hs766T, and AsPC-1). Resveratrol induced cell cycle arrest by up-regulating the expression of p21/CIP1, p27/KIP1 and inhibiting the expression of cyclin D1. Resveratrol induced apoptosis by up-regulating Bim and activating caspase-3. Resveratrol inhibited phosphorylation of FOXOs, and enhanced their nuclear translocation, FOXO-DNA binding and transcriptional activities. The inhibition of PI3K/AKT and MEK/ERK pathways induced FOXO transcriptional activity and apoptosis. Furthermore, deletion of FOXO genes abrogated resveratrol-induced cell cycle arrest and apoptosis. Finally, resveratrol-treated mice showed significant inhibition in tumor growth which was associated with reduced phosphorylation of ERK, PI3K, AKT, FOXO1 and FOXO3a, and induction of apoptosis and FOXO target genes. CONCLUSIONS: These data suggest that inhibition of ERK and AKT pathways act together to activate FOXO transcription factors which are involved in resveratrol-mediated pancreatic tumor growth suppression

    Oncolytic virus and PD-1/PD-L1 blockade combination therapy

    No full text
    Chun-Yu Chen,1 Brian Hutzen,1 Mary F Wedekind,1,2 Timothy P Cripe1,2 1Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, Nationwide Children&rsquo;s Hospital, 2Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children&rsquo;s Hospital, The Ohio State University, Columbus, OH, USA Abstract: Oncolytic viruses are lytic for many types of cancers but are attenuated or replication-defective in normal tissues. Aside from tumor lysis, oncolytic viruses can induce host immune responses against cancer cells and may thus be viewed as a form of immunotherapy. Although recent successes with checkpoint inhibitors have shown that enhancing antitumor immunity can be effective, the dynamic nature of the immunosuppressive tumor microenvironment presents significant hurdles to the broader application of these therapies. Targeting one immune-suppressive pathway may not be sufficient to eliminate tumors. Here we focus on the development of the combination of oncolytic virotherapy with checkpoint inhibitors designed to target the programmed cell death protein 1 and programmed cell death ligand 1 signaling axis. We also discuss future directions for the clinical application of this novel combination therapy. Keywords: cancer, viral oncolysis, immunotherapy, immune checkpoint blockad

    LLL-3 inhibits STAT3 activity suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model

    No full text
    Persistent activation of the signal transducer and activator of transcription 3 (STAT3) signalling has been linked to oncogenesis and the development of chemotherapy resistance in glioblastoma and other cancers. Inhibition of the STAT3 pathway thus represents an attractive therapeutic approach for cancer. In this study we investigated the inhibitory effects of a small molecule compound known as LLL-3 which is a structural analogue of the earlier reported STAT3 inhibitor STA-21 on the cell viability of human glioblastoma cells U87 U373 and U251 expressing constitutively activated STAT3. We also investigated the inhibitory effects of LLL-3 on U87 glioblastoma cell growth in a mouse tumour model as well as the impact it had on the survival time of the treated mice. We observed that LLL-3 inhibited STAT3-dependent transcriptional and DNA binding activities. LLL-3 also inhibited viability of U87 U373 and U251 glioblastoma cells as well as induced apoptosis of these glioblastoma cell lines as evidenced by increased poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavages. Furthermore the U87 glioblastoma tumour-bearing mice treated with LLL-3 exhibited prolonged survival relative to vehicle-treated mice (28.5 vs 16 days) and had smaller intracranial tumours and no evidence of contralateral invasion. These results suggest that LLL-3 may be a potential therapeutic agent in the treatment of glioblastoma with constitutive STAT3 activation. Originally published in British Journal of Cancer 2009 Vol. 110 No.

    Neuroblastomas vary widely in their sensitivities to herpes simplex virotherapy unrelated to virus receptors and susceptibility

    No full text
    Item does not contain fulltextAlthough most high-risk neuroblastomas are responsive to chemotherapy, relapse is common and long-term survival is <40%, underscoring the need for more effective treatments. We evaluated the responsiveness of 12 neuroblastoma cell lines to the Deltagamma134.5 attenuated oncolytic herpes simplex virus (oHSV), Seprehvir (HSV1716), which is currently used in pediatric phase I trials. We found that entry of Seprehvir in neuroblastoma cells is independent of the expression of nectin-1 and the sum of all four known major HSV entry receptors. We observed varying levels of sensitivity and permissivity to Seprehvir, suggesting that the cellular anti-viral response, not virus entry, is the key determinant of efficacy with this virus. In vivo, we found significant anti-tumor efficacy following Seprehvir treatment, which ranged from 6/10 complete responses in the CHP-134 model to a mild prolonged median survival in the SK-N-AS model. Taken together, these data suggest that anti-tumor efficacy cannot be solely predicted based on in vitro response. Whether or not this discordance holds true for other viruses or tumor types is unknown. Our results also suggest that profiling the expression of known viral entry receptors on neuroblastoma cells may not be entirely predictive of their susceptibility to Seprehvir therapy
    corecore