2,174 research outputs found

    Geometric criticality between plaquette phases in integer-spin kagome XXZ antiferromagnets

    Full text link
    The phase diagram of the uniaxially anisotropic s=1s=1 antiferromagnet on the kagom\'e lattice includes a critical line exactly described by the classical three-color model. This line is distinct from the standard geometric classical criticality that appears in the classical limit (ss \to \infty) of the 2D XY model; the s=1s=1 geometric T=0 critical line separates two unconventional plaquette-ordered phases that survive to nonzero temperature. The experimentally important correlations at finite temperature and the nature of the transitions into these ordered phases are obtained using the mapping to the three-color model and a combination of perturbation theory and a variational ansatz for the ordered phases. The ordered phases show sixfold symmetry breaking and are similar to phases proposed for the honeycomb lattice dimer model and s=1/2s=1/2 XXZXXZ model. The same mapping and phase transition can be realized also for integer spins s2s \geq 2 but then require strong on-site anisotropy in the Hamiltonian.Comment: 5 pages, 2 figure

    Zero Temperature Dynamics of the Weakly Disordered Ising Model

    Full text link
    The Glauber dynamics of the pure and weakly disordered random-bond 2d Ising model is studied at zero-temperature. A single characteristic length scale, L(t)L(t), is extracted from the equal time correlation function. In the pure case, the persistence probability decreases algebraically with the coarsening length scale. In the disordered case, three distinct regimes are identified: a short time regime where the behaviour is pure-like; an intermediate regime where the persistence probability decays non-algebraically with time; and a long time regime where the domains freeze and there is a cessation of growth. In the intermediate regime, we find that P(t)L(t)θP(t)\sim L(t)^{-\theta'}, where θ=0.420±0.009\theta' = 0.420\pm 0.009. The value of θ\theta' is consistent with that found for the pure 2d Ising model at zero-temperature. Our results in the intermediate regime are consistent with a logarithmic decay of the persistence probability with time, P(t)(lnt)θdP(t)\sim (\ln t)^{-\theta_d}, where θd=0.63±0.01\theta_d = 0.63\pm 0.01.Comment: references updated, very minor amendment to abstract and the labelling of figures. To be published in Phys Rev E (Rapid Communications), 1 March 199

    Interfering directed paths and the sign phase transition

    Full text link
    We revisit the question of the "sign phase transition" for interfering directed paths with real amplitudes in a random medium. The sign of the total amplitude of the paths to a given point may be viewed as an Ising order parameter, so we suggest that a coarse-grained theory for system is a dynamic Ising model coupled to a Kardar-Parisi-Zhang (KPZ) model. It appears that when the KPZ model is in its strong-coupling ("pinned") phase, the Ising model does not have a stable ferromagnetic phase, so there is no sign phase transition. We investigate this numerically for the case of {\ss}1+1 dimensions, demonstrating the instability of the Ising ordered phase there.Comment: 4 pages, 4 figure

    Universality and Crossover of Directed Polymers and Growing Surfaces

    Full text link
    We study KPZ surfaces on Euclidean lattices and directed polymers on hierarchical lattices subject to different distributions of disorder, showing that universality holds, at odds with recent results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover toward the universal values of the exponents and verify that the exponent governing such crossover is universal too. In the limit of a 1+epsilon dimensional system we obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let

    The short-time Dynamics of the Critical Potts Model

    Full text link
    The universal behaviour of the short-time dynamics of the three state Potts model in two dimensions at criticality is investigated with Monte Carlo methods. The initial increase of the order is observed. The new dynamic exponent θ\theta as well as exponent zz and β/ν\beta/\nu are determined. The measurements are carried out in the very beginning of the time evolution. The spatial correlation length is found to be very short compared with the lattice size.Comment: 6 pages, 3 figure

    TaxMan : a server to trim rRNA reference databases and inspect taxonomic coverage

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nucleic Acids Research 40 (2012): W82-W87, doi:10.1093/nar/gks418.Amplicon sequencing of the hypervariable regions of the small subunit ribosomal RNA gene is a widely accepted method for identifying the members of complex bacterial communities. Several rRNA gene sequence reference databases can be used to assign taxonomic names to the sequencing reads using BLAST, USEARCH, GAST or the RDP classifier. Next-generation sequencing methods produce ample reads, but they are short, currently ∼100–450 nt (depending on the technology), as compared to the full rRNA gene of ∼1550 nt. It is important, therefore, to select the right rRNA gene region for sequencing. The primers should amplify the species of interest and the hypervariable regions should differentiate their taxonomy. Here, we introduce TaxMan: a web-based tool that trims reference sequences based on user-selected primer pairs and returns an assessment of the primer specificity by taxa. It allows interactive plotting of taxa, both amplified and missed in silico by the primers used. Additionally, using the trimmed sequences improves the speed of sequence matching algorithms. The smaller database greatly improves run times (up to 98%) and memory usage, not only of similarity searching (BLAST), but also of chimera checking (UCHIME) and of clustering the reads (UCLUST). TaxMan is available at http://www.ibi.vu.nl/programs/taxmanwww/.University of Amsterdam under the research priority area ‘Oral Infections and Inflammation’ (to B.W.B.); National Science Foundation [NSF/BDI 0960626 to S.M.H.]; the European Union Seventh Framework Programme (FP7/ 2007-2013) under ANTIRESDEV grant agreement no 241446 (to E.Z.)

    Loop models and their critical points

    Full text link
    Loop models have been widely studied in physics and mathematics, in problems ranging from polymers to topological quantum computation to Schramm-Loewner evolution. I present new loop models which have critical points described by conformal field theories. Examples include both fully-packed and dilute loop models with critical points described by the superconformal minimal models and the SU(2)_2 WZW models. The dilute loop models are generalized to include SU(2)_k models as well.Comment: 20 pages, 15 figure

    Finite Size Effects in Vortex Localization

    Full text link
    The equilibrium properties of flux lines pinned by columnar disorder are studied, using the analogy with the time evolution of a diffusing scalar density in a randomly amplifying medium. Near H_{c1}, the physical features of the vortices in the localized phase are shown to be determined by the density of states near the band edge. As a result, H_{c1} is inversely proportional to the logarithm of the sample size, and the screening length of the perpendicular magnetic field decreases with temperature. For large tilt the extended ground state turns out to wander in the plane perpendicular to the defects with exponents corresponding to a directed polymer in a random medium, and the energy difference between two competing metastable states in this case is extensive. The divergence of the effective potential associated with strong pinning centers as the tilt approaches its critical value is discussed as well.Comment: 10 pages, 2 figure

    Absence of long-range order in a spin-half Heisenberg antiferromagnet on the stacked kagome lattice

    Full text link
    We study the ground state of a spin-half Heisenberg antiferromagnet on the stacked kagome lattice by using a spin-rotation-invariant Green's-function method. Since the pure two-dimensional kagome antiferromagnet is most likely a magnetically disordered quantum spin liquid, we investigate the question whether the coupling of kagome layers in a stacked three-dimensional system may lead to a magnetically ordered ground state. We present spin-spin correlation functions and correlation lengths. For comparison we apply also linear spin wave theory. Our results provide strong evidence that the system remains short-range ordered independent of the sign and the strength of the interlayer coupling

    Determination of the Critical Point and Exponents from short-time Dynamics

    Full text link
    The dynamic process for the two dimensional three state Potts model in the critical domain is simulated by the Monte Carlo method. It is shown that the critical point can rigorously be located from the universal short-time behaviour. This makes it possible to investigate critical dynamics independently of the equilibrium state. From the power law behaviour of the magnetization the exponents β/(νz)\beta / (\nu z) and 1/(νz)1/ (\nu z) are determined.Comment: 6 pages, 4 figure
    corecore