19 research outputs found

    Faseb Journal

    No full text

    Molecular Biology of the Cell

    No full text

    Faseb Journal

    No full text

    Biochemical Journal

    No full text

    Journal of Physiology-London

    No full text

    Faseb Journal

    No full text

    Longitudinal studies of patients with ANCA vasculitis demonstrate concurrent reactivity to complementary PR3 protein segments cPR3m and cPR3C and with no reactivity to cPR3N

    No full text
    Antibodies recognizing the complement of the middle of PR3 (cPR3m) occur in ~30% of PR3-ANCA-vasculitis patients and immunization of animals with a peptide complementary to the middle of PR3 (cPR3m) induces not only anti-complementary PR3 antibodies, but also anti-PR3 antibodies derived through an anti-idiotypic response. PR3 epitopes recognized by patient ANCA however, are not restricted to the middle of PR3. This prompted us to test for antibodies that react with proteins complementary to the terminal regions of PR3 (cPR3C and cPR3N) in PR3-ANCA patients. Anti-cPR3C reactivity was detected in 28% of patients but anti-cPR3N reactivity in only 15%. Ranked anti-cPR3C and anti-cPR3m reactivity correlated in the cohort, whereas there was no significant relationship between cPR3C and cPR3N reactivity. Serial samples from three patients’ revealed that anti-cPR3C and anti-cPR3m reactivity followed a similar pattern over time. Serial samples from a fourth patient demonstrated an anti-cPR3N response without concurrent cPR3m or cPR3C reactivity. Epitope determination by mass spectrometry identified a thirteen amino acid sequence on cPR3C that contained a common binding site recognized by antibodies from three patients. This peptide sequence contains a “PHQ” motif which was reported to be the basis for cross-reactivity of anti-cPR3m antibodies with plasminogen. Why these antibodies are detected in only ~30% of the patients remains unclear. The data reveal it is not due to lack of inclusion of flanking regions of complementary PR3 during screening. Instead, quite unexpectedly, the data demonstrate that patients’ antibodies react with a restricted epitope that exists in both cPR3m and cPR3C

    Rapid Detection of Panton-Valentine Leukocidin in Staphylococcus aureus Cultures by Use of a Lateral Flow Assay Based on Monoclonal Antibodies

    Get PDF
    Panton-Valentine leukocidin (PVL) is a virulence factor of Staphylococcus aureus, which is associated with skin and soft-tissue infections and necrotizing pneumonia. To develop a rapid phenotypic assay, recombinant PVL F component was used to generate monoclonal antibodies by phage display. These antibodies were spotted on protein microarrays and screened using different lukF-PV preparations and detection antibodies. This led to the identification of the optimal antibody combination that was then used to establish a lateral flow assay. This test was used to detect PVL in S. aureus cultures. The detection limit of the assay with purified native and recombinant antigens was determined to be around 1 ng/ml. Overnight cultures from various solid and liquid media proved suitable for PVL detection. Six hundred strains and clinical isolates from patients from America, Europe, Australia, Africa, and the Middle East were tested. Isolates were genotyped in parallel by DNA microarray hybridization for confirmation of PVL status and assignment to clonal complexes. The sensitivity, specificity, and positive and negative predictive values of the assay in this trial were 99.7, 98.3, 98.4, and 99.7%, respectively. A total of 302 clinical isolates and reference strains were PVL positive and were assigned to 21 different clonal complexes. In summary, the lateral flow test allows rapid and economical detection of PVL in a routine bacteriology laboratory. As the test utilizes cultures from standard media and does not require sophisticated equipment, it can be easily integrated into a laboratory's workflow and might contribute to timely therapy of PVL-associated infections
    corecore