5,218 research outputs found
Wide parameter search for isolated pulsars using the Hough transform
We use the Hough transform to analyze data from the second science run of the
LIGO interferometers, to look for gravitational waves from isolated pulsars. We
search over the whole sky and over a large range of frequencies and spin-down
parameters. Our search method is based on the Hough transform, which is a
semi-coherent, computationally efficient, and robust pattern recognition
technique. We also present a validation of the search pipeline using hardware
signal injections.Comment: Presented at GWDAW-9 in Annecy, France (Dec. 2004). 11 pages, 5
Figures. To appear in Classical and Quantum Gravit
A Catalog of Background Stars Reddened by Dust in the Taurus Dark Clouds
Normal field stars located behind dense clouds are a valuable resource in
interstellar astrophysics, as they provide continua in which to study phenomena
such as gas-phase and solid-state absorption features, interstellar extinction
and polarization. This paper reports the results of a search for highly
reddened stars behind the Taurus Dark Cloud complex. We use the Two Micron All
Sky Survey (2MASS) Point Source Catalog to survey a 50 sq deg area of the cloud
to a limiting magnitude of K = 10.0. Photometry in the 1.2-2.2 micron passbands
from 2MASS is combined with photometry at longer infrared wavelengths (3.6-12
micron) from the Spitzer Space Telescope and the Infrared Astronomical
Satellite to provide effective discrimination between reddened field stars and
young stellar objects (YSOs) embedded in the cloud. Our final catalog contains
248 confirmed or probable background field stars, together with estimates of
their total visual extinctions, which span the range 2-29 mag. We also identify
the 2MASS source J04292083+2742074 (IRAS 04262+2735) as a previously
unrecognized candidate YSO, based on the presence of infrared emission greatly
in excess of that predicted for a normal reddened photosphere at wavelengths >5
microns
Recommended from our members
Transfer RNA genes experience exceptionally elevated mutation rates.
Transfer RNAs (tRNAs) are a central component for the biological synthesis of proteins, and they are among the most highly conserved and frequently transcribed genes in all living things. Despite their clear significance for fundamental cellular processes, the forces governing tRNA evolution are poorly understood. We present evidence that transcription-associated mutagenesis and strong purifying selection are key determinants of patterns of sequence variation within and surrounding tRNA genes in humans and diverse model organisms. Remarkably, the mutation rate at broadly expressed cytosolic tRNA loci is likely between 7 and 10 times greater than the nuclear genome average. Furthermore, evolutionary analyses provide strong evidence that tRNA genes, but not their flanking sequences, experience strong purifying selection acting against this elevated mutation rate. We also find a strong correlation between tRNA expression levels and the mutation rates in their immediate flanking regions, suggesting a simple method for estimating individual tRNA gene activity. Collectively, this study illuminates the extreme competing forces in tRNA gene evolution and indicates that mutations at tRNA loci contribute disproportionately to mutational load and have unexplored fitness consequences in human populations
Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors
The two-body dynamics in general relativity has been solved perturbatively
using the post-Newtonian (PN) approximation. The evolution of the orbital phase
and the emitted gravitational radiation are now known to a rather high order up
to O(v^8), v being the characteristic velocity of the binary. The orbital
evolution, however, cannot be specified uniquely due to the inherent freedom in
the choice of parameter used in the PN expansion as well as the method pursued
in solving the relevant differential equations. The goal of this paper is to
determine the (dis)agreement between different PN waveform families in the
context of initial and advanced gravitational-wave detectors. The waveforms
employed in our analysis are those that are currently used by Initial
LIGO/Virgo, that is the time-domain PN models TaylorT1, TaylorT2, TaylorT3,
TaylorT4 and TaylorEt, the effective one-body (EOB) model, and the
Fourier-domain representation TaylorF2. We examine the overlaps of these models
with one another and with the prototype effective one-body model (calibrated to
numerical relativity simulations, as currently used by initial LIGO) for a
number of different binaries at 2PN, 3PN and 3.5PN orders to quantify their
differences and to help us decide whether there exist preferred families that
are the most appropriate as search templates. We conclude that as long as the
total mass remains less than a certain upper limit M_crit, all template
families at 3.5PN order (except TaylorT3 and TaylorEt) are equally good for the
purpose of detection. The value of M_crit is found to be ~ 12M_Sun for Initial,
Enhanced and Advanced LIGO. From a purely computational point of view we
recommend that 3.5PN TaylorF2 be used below Mcrit and EOB calibrated to
numerical relativity simulations be used for total binary mass M > Mcrit.Comment: 27 pages, 8 figures, 4 tables, submitted to PR
Computational Resources to Filter Gravitational Wave Data with P-approximant Templates
The prior knowledge of the gravitational waveform from compact binary systems
makes matched filtering an attractive detection strategy. This detection method
involves the filtering of the detector output with a set of theoretical
waveforms or templates. One of the most important factors in this strategy is
knowing how many templates are needed in order to reduce the loss of possible
signals. In this study we calculate the number of templates and computational
power needed for a one-step search for gravitational waves from inspiralling
binary systems. We build on previous works by firstly expanding the
post-Newtonian waveforms to 2.5-PN order and secondly, for the first time,
calculating the number of templates needed when using P-approximant waveforms.
The analysis is carried out for the four main first-generation interferometers,
LIGO, GEO600, VIRGO and TAMA. As well as template number, we also calculate the
computational cost of generating banks of templates for filtering GW data. We
carry out the calculations for two initial conditions. In the first case we
assume a minimum individual mass of and in the second, we assume
a minimum individual mass of . We find that, in general, we need
more P-approximant templates to carry out a search than if we use standard PN
templates. This increase varies according to the order of PN-approximation, but
can be as high as a factor of 3 and is explained by the smaller span of the
P-approximant templates as we go to higher masses. The promising outcome is
that for 2-PN templates the increase is small and is outweighed by the known
robustness of the 2-PN P-approximant templates.Comment: 17 pages, 8 figures, Submitted to Class.Quant.Gra
Performance of a 1200m long suspended Fabry-Perot cavity
Using one arm of the Michelson interferometer and the power recycling mirror
of the interferometric gravitational wave detector GEO600, we created a
Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment
was to gather first experience with the main optics, its suspensions and the
corresponding control systems. The residual displacement of a main mirror is
about 150 nm rms. By stabilising the length of the 1200 m long cavity to the
pre-stabilised laser beam we achieved an error point frequency noise of 0.1
mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the
reliable performance of all included subsystems by several 10-hour-periods of
continuous stable operation. Thus the full frequency stabilisation scheme for
GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure
Spectropolarimetry of the 3.4 micron absorption feature in NGC 1068
In order to test the silicate-core/organic-mantle model of galactic
interstellar dust, we have performed spectropolarimetry of the 3.4 micron C-H
bond stretch that is characteristic of aliphatic hydrocarbons, using the
nucleus of the Seyfert 2 galaxy, NGC 1068, as a bright, dusty background
source. Polarization calculations show that, if the grains in NGC 1068 had the
properties assigned by the core-mantle model to dust in the galactic diffuse
ISM, they would cause a detectable rise in polarization over the 3.4 micron
feature. No such increase is observed. We discuss modifications to the basic
core-mantle model, such as changes in grain size or the existence of additional
non-hydrocarbon aligned grain populations, which could better fit the
observational evidence. However, we emphasize that the absence of polarization
over the 3.4 micron band in NGC 1068 - and, indeed, in every line of sight
examined to date - can be readily explained by a population of small, unaligned
carbonaceous grains with no physical connection to the silicates.Comment: ApJ, accepte
Improving Sequential Determinantal Point Processes for Supervised Video Summarization
It is now much easier than ever before to produce videos. While the
ubiquitous video data is a great source for information discovery and
extraction, the computational challenges are unparalleled. Automatically
summarizing the videos has become a substantial need for browsing, searching,
and indexing visual content. This paper is in the vein of supervised video
summarization using sequential determinantal point process (SeqDPP), which
models diversity by a probabilistic distribution. We improve this model in two
folds. In terms of learning, we propose a large-margin algorithm to address the
exposure bias problem in SeqDPP. In terms of modeling, we design a new
probabilistic distribution such that, when it is integrated into SeqDPP, the
resulting model accepts user input about the expected length of the summary.
Moreover, we also significantly extend a popular video summarization dataset by
1) more egocentric videos, 2) dense user annotations, and 3) a refined
evaluation scheme. We conduct extensive experiments on this dataset (about 60
hours of videos in total) and compare our approach to several competitive
baselines
Estimating the detectable rate of capture of stellar mass black holes by massive central black holes in normal galaxies
The capture and subsequent inspiral of stellar mass black holes on eccentric
orbits by central massive black holes, is one of the more interesting likely
sources of gravitational radiation detectable by LISA. We estimate the rate of
observable events and the associated uncertainties. A moderately favourable
mass function could provide many detectable bursts each year, and a detection
of at least one burst per year is very likely given our current understanding
of the populations in cores of normal spiral galaxies.Comment: 3 pages 2-column revtex Latex macro. No figures. Classical and
Quantum Gravity, accepte
- …
