29 research outputs found

    Statistical processing and visualization of the medical data

    Get PDF
    The aim of the research is to consider basic concepts of descriptive statistics and to show basic histograms for the medical data

    Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2.M induced by Pb2+

    Get PDF
    DNA sequences with guanine repeats can form G-quartets that adopt G-quadruplex structures in the presence of specific metal ions. Using circular dichroism (CD) and ultraviolet-visible (UV–Vis) spectroscopy, we determined the spectral characteristics and the overall conformation of a G-quadruplex of PS2.M with an oligonucleotide sequence, d(GTG3TAG3CG3TTG2). UV-melting curves demonstrate that the Pb2+-induced G-quadruplex formed unimolecularly and the highest melting temperature (Tm) is 72°C. The analysis of the UV titration results reveals that the binding stoichiometry of Pb2+ ions to PS2.M is two, suggesting that the Pb2+ ions coordinate between adjacent G-quartets. Binding of ions to G-rich DNA is a complex multiple-pathway process, which is strongly affected by the type of the cations. Kinetic studies suggest that the Pb2+-induced folding of PS2.M to G-quadruplex probably proceeds through a three-step pathway involving two intermediates. Structural transition occurs after adding Pb(NO3)2 to the Na+- or K+-induced G-quadruplexes, which may be attributed to the replacement of Na+ or K+ by Pb2+ ions and the generation of a more compact Pb2+–PS2.M structure. Comparison of the relaxation times shows that the Na+→Pb2+ exchange is more facile than the K+→Pb2+ exchange process, and the mechanisms for these processes are proposed

    Peripheral Blood Signatures of Lead Exposure

    Get PDF
    BACKGROUND: Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Elimination of cyanobacterial toxins in Australian water works

    No full text

    Blue-green algae is predominant in Dianshan Lake

    No full text
    corecore