3,672 research outputs found
Hopping in a Supercooled Lennard-Jones Liquid: Metabasins, Waiting Time Distribution, and Diffusion
We investigate the jump motion among potential energy minima of a
Lennard-Jones model glass former by extensive computer simulation. From the
time series of minima energies, it becomes clear that the energy landscape is
organized in superstructures, called metabasins. We show that diffusion can be
pictured as a random walk among metabasins, and that the whole temperature
dependence resides in the distribution of waiting times. The waiting time
distribution exhibits algebraic decays: for very short times and
for longer times, where near . We
demonstrate that solely the waiting times in the very stable basins account for
the temperature dependence of the diffusion constant.Comment: to be published in Phys. Rev.
Non Markovian persistence in the diluted Ising model at criticality
We investigate global persistence properties for the non-equilibrium critical
dynamics of the randomly diluted Ising model. The disorder averaged persistence
probability of the global magnetization is found to decay
algebraically with an exponent that we compute analytically in a
dimensional expansion in . Corrections to Markov process are
found to occur already at one loop order and is thus a novel
exponent characterizing this disordered critical point. Our result is
thoroughly compared with Monte Carlo simulations in , which also include a
measurement of the initial slip exponent. Taking carefully into account
corrections to scaling, is found to be a universal exponent,
independent of the dilution factor along the critical line at , and
in good agreement with our one loop calculation.Comment: 7 pages, 4 figure
Local Properties of the Potential Energy Landscape of a Model Glass: Understanding the Low Temperature Anomalies
Though the existence of two-level systems (TLS) is widely accepted to explain
low temperature anomalies in the sound absorption, heat capacity, thermal
conductivity and other quantities, an exact description of their microscopic
nature is still lacking. We performed computer simulations for a binary
Lennard-Jones system, using a newly developed algorithm to locate double-well
potentials (DWP) and thus two-level systems on a systematic basis. We show that
the intrinsic limitations of computer simulations like finite time and finite
size problems do not hamper this analysis. We discuss how the DWP are embedded
in the total potential energy landscape. It turns out that most DWP are
connected to the dynamics of the smaller particles and that these DWP are
rather localized. However, DWP related to the larger particles are more
collective
The Potential for Student Performance Prediction in Small Cohorts with Minimal Available Attributes
The measurement of student performance during their progress through university study provides academic leadership with critical information on each student’s likelihood of success. Academics have traditionally used their interactions with individual students through class activities and interim assessments to identify those “at risk” of failure/withdrawal. However, modern university environments, offering easy on-line availability of course material, may see reduced lecture/tutorial attendance, making such identification more challenging. Modern data mining and machine learning techniques provide increasingly accurate predictions of student examination assessment marks, although these approaches have focussed upon large student populations and wide ranges of data attributes per student. However, many university modules comprise relatively small student cohorts, with institutional protocols limiting the student attributes available for analysis. It appears that very little research attention has been devoted to this area of analysis and prediction. We describe an experiment conducted on a final-year university module student cohort of 23, where individual student data are limited to lecture/tutorial attendance, virtual learning environment accesses and intermediate assessments. We found potential for predicting individual student interim and final assessment marks in small student cohorts with very limited attributes and that these predictions could be useful to support module leaders in identifying students potentially “at risk.”.Peer reviewe
What does the potential energy landscape tell us about the dynamics of supercooled liquids and glasses?
For a model glass-former we demonstrate via computer simulations how
macroscopic dynamic quantities can be inferred from a PEL analysis. The
essential step is to consider whole superstructures of many PEL minima, called
metabasins, rather than single minima. We show that two types of metabasins
exist: some allowing for quasi-free motion on the PEL (liquid-like), the others
acting as traps (solid-like). The activated, multi-step escapes from the latter
metabasins are found to dictate the slowing down of dynamics upon cooling over
a much broader temperature range than is currently assumed
Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study
The origin of the non-exponential relaxation of silver ions in the
crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate
two-time and three-time 109Ag NMR correlation functions. The non-exponentiality
is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an
intrinsic non-exponentiality. Thus, the data give no evidence for the relevance
of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure
Backward correlations and dynamic heterogeneities: a computer study of ion dynamics
We analyse the correlated back and forth dynamics and dynamic
heterogeneities, i.e. the presence of fast and slow ions, for a lithium
metasilicate system via computer simulations. For this purpose we define, in
analogy to previous work in the field of glass transition, appropriate
three-time correlation functions. They contain information about the dynamics
during two successive time intervals. First we apply them to simple model
systems in order to clarify their information content. Afterwards we use this
formalism to analyse the lithium trajectories. A strong back-dragging effect is
observed, which also fulfills the time-temperature superposition principle.
Furthermore, it turns out that the back-dragging effect is long-ranged and
exceeds the nearest neighbor position. In contrast, the strength of the dynamic
heterogeneities does not fulfill the time-temperature superposition principle.
The lower the temperature, the stronger the mobility difference between fast
and slow ions. The results are then compared with the simple model systems
considered here as well as with some lattice models of ion dynamics.Comment: 12 pages, 10 figure
Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions
Molecular dynamics simulations are performed to study the lithium jumps in
LiPO3 glass. In particular, we calculate higher-order correlation functions
that probe the positions of single lithium ions at several times. Three-time
correlation functions show that the non-exponential relaxation of the lithium
ions results from both correlated back-and-forth jumps and the existence of
dynamical heterogeneities, i.e., the presence of a broad distribution of jump
rates. A quantitative analysis yields that the contribution of the dynamical
heterogeneities to the non-exponential depopulation of the lithium sites
increases upon cooling. Further, correlated back-and-forth jumps between
neighboring sites are observed for the fast ions of the distribution, but not
for the slow ions and, hence, the back-jump probability depends on the
dynamical state. Four-time correlation functions indicate that an exchange
between fast and slow ions takes place on the timescale of the jumps
themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites
featuring fast and slow lithium dynamics, respectively, are intimately mixed.
In addition, a backward correlation beyond the first neighbor shell for highly
mobile ions and the presence of long-range dynamical heterogeneities suggest
that fast ion migration occurs along preferential pathways in the glassy
matrix. In the melt, we find no evidence for correlated back-and-forth motions
and dynamical heterogeneities on the length scale of the next-neighbor
distance.Comment: 12 pages, 13 figure
Equilibrium and out of equilibrium thermodynamics in supercooled liquids and glasses
We review the inherent structure thermodynamical formalism and the
formulation of an equation of state for liquids in equilibrium based on the
(volume) derivatives of the statistical properties of the potential energy
surface. We also show that, under the hypothesis that during aging the system
explores states associated to equilibrium configurations, it is possible to
generalize the proposed equation of state to out-of-equilibrium conditions. The
proposed formulation is based on the introduction of one additional parameter
which, in the chosen thermodynamic formalism, can be chosen as the local minima
where the slowly relaxing out-of-equilibrium liquid is trapped.Comment: 7 pages, 4 eps figure
- …
