22,009 research outputs found

    Statistical Laws and Mechanics of Voronoi Random Lattices

    Full text link
    We investigate random lattices where the connectivities are determined by the Voronoi construction, while the location of the points are the dynamic degrees of freedom. The Voronoi random lattices with an associated energy are immersed in a heat bath and investigated using a Monte Carlo simulation algorithm. In thermodynamic equilibrium we measure coordination number distributions and test the Aboav-Weaire and Lewis laws.Comment: 14 pages (figures not included), LaTeX, HLRZ-26/9

    SUSY-QCD Corrections to Dark Matter Annihilation in the Higgs Funnel

    Full text link
    We compute the full O(alpha_s) SUSY-QCD corrections to dark matter annihilation in the Higgs-funnel, resumming potentially large mu tan beta and A_b contributions and keeping all finite O(m_b,s,1/tan^2 beta) terms. We demonstrate numerically that these corrections strongly influence the extraction of SUSY mass parameters from cosmological data and must therefore be included in common analysis tools such as DarkSUSY or micrOMEGAs.Comment: 4 pages, 3 (partly color) figures, version to be published in PR

    SUSY-QCD corrections to stop annihilation into electroweak final states including Coulomb enhancement effects

    Get PDF
    We present the full O(αs)\mathcal{O}(\alpha_s) supersymmetric QCD corrections for stop-anti-stop annihilation into electroweak final states within the Minimal Supersymmetric Standard Model (MSSM). We also incorporate Coulomb corrections due to gluon exchange between the incoming stops. Numerical results for the annihilation cross sections and the predicted neutralino relic density are presented. We show that the impact of the radiative corrections on the cosmologically preferred region of the parameter space can become larger than the current experimental uncertainty, shifting the relic bands within the considered regions of the parameter space by up to a few tens of GeV.Comment: 20 pages, 13 figures, updated to version published in Phys. Rev.

    Squark and Gaugino Hadroproduction and Decays in Non-Minimal Flavour Violating Supersymmetry

    Get PDF
    We present an extensive analysis of squark and gaugino hadroproduction and decays in non-minimal flavour violating supersymmetry. We employ the so-called super-CKM basis to define the possible misalignment of quark and squark rotations, and we use generalized (possibly complex) charges to define the mutual couplings of (s)quarks and gauge bosons/gauginos. The cross sections for all squark-(anti-)squark/gaugino pair and squark-gaugino associated production processes as well as their decay widths are then given in compact analytic form. For four different constrained supersymmetry breaking models with non-minimal flavour violation in the second/third generation squark sector only, we establish the parameter space regions allowed/favoured by low-energy, electroweak precision, and cosmological constraints and display the chirality and flavour decomposition of all up- and down-type squark mass eigenstates. Finally, we compute numerically the dependence of a representative sample of production cross sections at the LHC on the off-diagonal mass matrix elements in the experimentally allowed/favoured ranges.Comment: 35 pages, 29 (partly colour) figures. Some typos corrected, wording of several paragraphs improved, version accepted by Nucl. Phys.

    Discrete Fracture Model with Anisotropic Load Sharing

    Full text link
    A two-dimensional fracture model where the interaction among elements is modeled by an anisotropic stress-transfer function is presented. The influence of anisotropy on the macroscopic properties of the samples is clarified, by interpolating between several limiting cases of load sharing. Furthermore, the critical stress and the distribution of failure avalanches are obtained numerically for different values of the anisotropy parameter α\alpha and as a function of the interaction exponent γ\gamma. From numerical results, one can certainly conclude that the anisotropy does not change the crossover point γc=2\gamma_c=2 in 2D. Hence, in the limit of infinite system size, the crossover value γc=2\gamma_c=2 between local and global load sharing is the same as the one obtained in the isotropic case. In the case of finite systems, however, for γ2\gamma\le2, the global load sharing behavior is approached very slowly

    Precision predictions for supersymmetric dark matter

    Full text link
    The dark matter relic density has been measured by Planck and its predecessors with an accuracy of about 2%. We present theoretical calculations with the numerical program DM@NLO in next-to-leading order SUSY QCD and beyond, which allow to reach this precision for gaugino and squark (co-)annihilations, and use them to scan the phenomenological MSSM for viable regions, applying also low-energy, electroweak and hadron collider constraints.Comment: 6 pages, 1 table, 8 figures, proceedings of ICHEP 201

    Flavour violating bosonic squark decays at LHC

    Full text link
    We study quark flavour violation (QFV) in the squark sector of the Minimal Supersymmetric Standard Model (MSSM). We assume mixing between the second and the third squark generations, i.e. sc_R-st_{L,R} mixing mixing. We focus on QFV effects in bosonic squark decays, in particular on the decay into the lightest Higgs boson h0, su_2 -> su_1 h0, where su_{1,2} are the lightest up-type squarks. We show that the branching ratio of this QFV decay can be quite large (up to 50 %) due to large QFV trilinear couplings, and large sc_R-st_{L, R} and st_L-st_R mixing, despite the strong constraints on QFV from B meson data. This can result in characteristic QFV final states with significant rates at LHC (14 TeV), such as pp -> gluino gluino X -> t + h0 + 3jets + Etmiss + X and pp -> gluino gluino X -> t t (or tbar tbar) + h0 + 2jets + Etmiss + X. The QFV bosonic squark decays can have an influence on the squark and gluino searches at LHC.Comment: Figure 3 replaced, Section 4 revise

    Perturbation propagation in random and evolved Boolean networks

    Full text link
    We investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and modifications of it. We show that even small Random Boolean Networks agree well with the predictions of the annealed approximation, but non-random networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.Comment: 10 pages, 8 figure
    corecore