11 research outputs found

    Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange-correlation

    Full text link
    In ab initio pseudopotential calculations within density-functional theory the nonlinear exchange-correlation interaction between valence and core electrons is often treated linearly through the pseudopotential. We discuss the accuracy and limitations of this approximation regarding a comparison of the local density approximation (LDA) and generalized gradient approximations (GGA), which we find to describe core-valence exchange-correlation markedly different. (1) Evaluating the binding properties of a number of typical solids we demonstrate that the pseudopotential approach and namely the linearization of core-valence exchange-correlation are both accurate and limited in the same way in GGA as in LDA. (2) Examining the practice to carry out GGA calculations using pseudopotentials derived within LDA we show that the ensuing results differ significantly from those obtained using pseudopotentials derived within GGA. As principal source of these differences we identify the distinct behavior of core-valence exchange-correlation in LDA and GGA which, accordingly, contributes substantially to the GGA induced changes of calculated binding properties.Comment: 13 pages, 6 figures, submitted to Phys. Rev. B, other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Augen

    No full text

    Kurse fuer auffaellige Kraftfahrer Zwischenbericht 1980

    No full text
    TIB: RN 7380 (7) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen <em>Fusarium fujikuroi</em> reveal complex regulation of secondary metabolism and novel metabolites.

    Get PDF
    The fungus Fusarium fujikuroi causes &ldquo;bakanae&rdquo; disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus&#39; interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen

    Microglia Activation and Anti-inflammatory Regulation in Alzheimer’s Disease

    No full text

    Literaturverzeichnis

    No full text
    corecore