578 research outputs found

    European populations of Diabrotica virgifera virgifera are resistant to aldrin, but not to methyl-parathion

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of cultivated corn in North America and has recently begun to invade Europe. In addition to crop rotation, chemical control is an important option for D. v. virgifera management. However, resistance to chemical insecticides has evolved repeatedly in the USA. In Europe, chemical control strategies have yet to be harmonized and no surveys of insecticide resistance have been carried out. We investigated the resistance to methyl-parathion and aldrin of samples from nine D. v. virgifera field populations originating from two European outbreaks thought to have originated from two independent introductions from North America. Diagnostic concentration bioassays revealed that all nine D. v. virgifera field populations were resistant to aldrin but susceptible to methyl-parathion. Aldrin resistance was probably introduced independently, at least twice, from North America into Europe, as there is no evident selection pressure to account for an increase of frequency of aldrin resistance in each of the invasive outbreaks in Europe. Our results suggest that organophosphates, such as methyl-parathion, may still provide effective control of both larval and adult D. v. virgifera in the European invasive outbreaks studied

    Dynamic wetting with two competing adsorbates

    Full text link
    We study the dynamic properties of a model for wetting with two competing adsorbates on a planar substrate. The two species of particles have identical properties and repel each other. Starting with a flat interface one observes the formation of homogeneous droplets of the respective type separated by nonwet regions where the interface remains pinned. The wet phase is characterized by slow coarsening of competing droplets. Moreover, in 2+1 dimensions an additional line of continuous phase transition emerges in the bound phase, which separates an unordered phase from an ordered one. The symmetry under interchange of the particle types is spontaneously broken in this region and finite systems exhibit two metastable states, each dominated by one of the species. The critical properties of this transition are analyzed by numeric simulations.Comment: 11 pages, 12 figures, final version published in PR

    On Matrix Product Ground States for Reaction-Diffusion Models

    Full text link
    We discuss a new mechanism leading to a matrix product form for the stationary state of one-dimensional stochastic models. The corresponding algebra is quadratic and involves four different matrices. For the example of a coagulation-decoagulation model explicit four-dimensional representations are given and exact expressions for various physical quantities are recovered. We also find the general structure of nn-point correlation functions at the phase transition.Comment: LaTeX source, 7 pages, no figure

    Matrix Product Ground States for Asymmetric Exclusion Processes with Parallel Dynamics

    Full text link
    We show in the example of a one-dimensional asymmetric exclusion process that stationary states of models with parallel dynamics may be written in a matrix product form. The corresponding algebra is quadratic and involves three different matrices. Using this formalism we prove previous conjectures for the equal-time correlation functions of the model.Comment: LaTeX, 8 pages, one postscript figur

    Universality properties of the stationary states in the one-dimensional coagulation-diffusion model with external particle input

    Full text link
    We investigate with the help of analytical and numerical methods the reaction A+A->A on a one-dimensional lattice opened at one end and with an input of particles at the other end. We show that if the diffusion rates to the left and to the right are equal, for large x, the particle concentration c(x) behaves like As/x (x measures the distance to the input end). If the diffusion rate in the direction pointing away from the source is larger than the one corresponding to the opposite direction the particle concentration behaves like Aa/sqrt(x). The constants As and Aa are independent of the input and the two coagulation rates. The universality of Aa comes as a surprise since in the asymmetric case the system has a massive spectrum.Comment: 27 pages, LaTeX, including three postscript figures, to appear in J. Stat. Phy

    Non-equilibrium Phase Transitions with Long-Range Interactions

    Full text link
    This review article gives an overview of recent progress in the field of non-equilibrium phase transitions into absorbing states with long-range interactions. It focuses on two possible types of long-range interactions. The first one is to replace nearest-neighbor couplings by unrestricted Levy flights with a power-law distribution P(r) ~ r^(-d-sigma) controlled by an exponent sigma. Similarly, the temporal evolution can be modified by introducing waiting times Dt between subsequent moves which are distributed algebraically as P(Dt)~ (Dt)^(-1-kappa). It turns out that such systems with Levy-distributed long-range interactions still exhibit a continuous phase transition with critical exponents varying continuously with sigma and/or kappa in certain ranges of the parameter space. In a field-theoretical framework such algebraically distributed long-range interactions can be accounted for by replacing the differential operators nabla^2 and d/dt with fractional derivatives nabla^sigma and (d/dt)^kappa. As another possibility, one may introduce algebraically decaying long-range interactions which cannot exceed the actual distance to the nearest particle. Such interactions are motivated by studies of non-equilibrium growth processes and may be interpreted as Levy flights cut off at the actual distance to the nearest particle. In the continuum limit such truncated Levy flights can be described to leading order by terms involving fractional powers of the density field while the differential operators remain short-ranged.Comment: LaTeX, 39 pages, 13 figures, minor revision

    Correlated Initial Conditions in Directed Percolation

    Full text link
    We investigate the influence of correlated initial conditions on the temporal evolution of a (d+1)-dimensional critical directed percolation process. Generating initial states with correlations ~r^(sigma-d) we observe that the density of active sites in Monte-Carlo simulations evolves as rho(t)~t^kappa. The exponent kappa depends continuously on sigma and varies in the range -beta/nu_{||}<=kappa<=eta. Our numerical results are confirmed by an exact field-theoretical renormalization group calculation.Comment: 10 pages, RevTeX, including 5 encapsulated postscript figure

    Yang-Lee zeros for a nonequilibrium phase transition

    Full text link
    Equilibrium systems which exhibit a phase transition can be studied by investigating the complex zeros of the partition function. This method, pioneered by Yang and Lee, has been widely used in equilibrium statistical physics. We show that an analogous treatment is possible for a nonequilibrium phase transition into an absorbing state. By investigating the complex zeros of the survival probability of directed percolation processes we demonstrate that the zeros provide information about universal properties. Moreover we identify certain non-trivial points where the survival probability for bond percolation can be computed exactly.Comment: LaTeX, IOP-style, 13 pages, 10 eps figure
    corecore