2,968 research outputs found

    Background Independent Algebraic Structures in Closed String Field Theory

    Get PDF
    We construct a Batalin-Vilkovisky (BV) algebra on moduli spaces of Riemann surfaces. This algebra is background independent in that it makes no reference to a state space of a conformal field theory. Conformal theories define a homomorphism of this algebra to the BV algebra of string functionals. The construction begins with a graded-commutative free associative algebra \C built from the vector space whose elements are orientable subspaces of moduli spaces of punctured Riemann surfaces. The typical element here is a surface with several connected components. The operation Δ\Delta of sewing two punctures with a full twist is shown to be an odd, second order derivation that squares to zero. It follows that (\C, \Delta) is a Batalin-Vilkovisky algebra. We introduce the odd operator ή=∂+ℏΔ\delta = \partial + \hbar\Delta, where ∂\partial is the boundary operator. It is seen that ή2=0\delta^2=0, and that consistent closed string vertices define a cohomology class of ή\delta. This cohomology class is used to construct a Lie algebra on a quotient space of \C. This Lie algebra gives a manifestly background independent description of a subalgebra of the closed string gauge algebra.Comment: phyzzx.tex, MIT-CTP-234

    Rolling Tachyon Solution in Vacuum String Field Theory

    Full text link
    We construct a time-dependent solution in vacuum string field theory and investigate whether the solution can be regarded as a rolling tachyon solution. First, compactifying one space direction on a circle of radius R, we construct a space-dependent solution given as an infinite number of *-products of a string field with center-of-mass momentum dependence of the form e^{-b p^2/4}. Our time-dependent solution is obtained by an inverse Wick rotation of the compactified space direction. We focus on one particular component field of the solution, which takes the form of the partition function of a Coulomb system on a circle with temperature R^2. Analyzing this component field both analytically and numerically using Monte Carlo simulation, we find that the parameter b in the solution must be set equal to zero for the solution to approach a finite value in the large time limit x^0\to\infty. We also explore the possibility that the self-dual radius R=\sqrt{\alpha'} is a phase transition point of our Coulomb system.Comment: 39 pages, 17 figures, v3: references adde

    Boundary states as exact solutions of (vacuum) closed string field theory

    Full text link
    We show that the boundary states are idempotent B*B=B with respect to the star product of HIKKO type closed string field theory. Variations around the boundary state correctly reproduce the open string spectrum with the gauge symmetry. We explicitly demonstrate it for the tachyonic and massless vector modes. The idempotency relation may be regarded as the equation of motion of closed string field theory at a possible vacuum.Comment: 30 pages, 2 figures, v3:regularization improve

    Letters

    Get PDF

    Time Dependent Solution in Cubic String Field Theory

    Full text link
    We study time dependent solutions in cubic open string field theory which are expected to describe the configuration of the rolling tachyon. We consider the truncated system consisting of component fields of level zero and two, which are expanded in terms of cosh n x^0 modes. For studying the large time behavior of the solution we need to know the coefficients of all and, in particular, large n modes. We examine numerically the coefficients of the n-th mode, and find that it has the leading n-dependence of the form (-\beta)^n \lambda^{-n^2} multiplied by a peculiar subleading part with peaks at n=2^m=4,8,16,32,64,128,.... This behavior is also reproduced analytically by solving simplified equations of motion of the tachyon system.Comment: 22 pages, 12 figures, LaTeX2e, v3:minor correction

    Patterns in Open String Field Theory Solutions

    Get PDF
    In open string field theory the kinetic operator mixes matter and ghost sectors, and thus the ghost structure of classical solutions is not universal. Nevertheless, we have found from numerical analysis that certain ratios of expectation values for states involving pure ghost excitations appear to be universal. We give an analytic expression for these ratios and find good evidence that they are common to all known solutions of open string field theory, including the tachyon vacuum solution, lump solutions and string fields representing marginal deformations. We also draw attention to a close correspondence between the expectation values for the pure matter components in the tachyon vacuum solution and those in the solution of a simpler equation for a ghost number zero string field. Finally we observe that the action of L_0 on the tachyon condensate gives a state that is approximately factorized into a matter and a ghost part.Comment: 21 pages, LaTe

    Vacuum Values for Auxiliary String Fields

    Get PDF
    Auxiliary string fields are introduced in light-cone gauge string field theory in order to express contact interactions as contractions of cubic vertices. The auxiliary field in the purely closed-string bosonic theory may be given a non-zero expectation value, leading to a phase in which world-sheets have boundaries.Comment: 13 pages, DAMTP/94-2

    An Analytical Construction of the SRB Measures for Baker-type Maps

    Get PDF
    For a class of dynamical systems, called the axiom-A systems, Sinai, Ruelle and Bowen showed the existence of an invariant measure (SRB measure) weakly attracting the temporal average of any initial distribution that is absolutely continuous with respect to the Lebesgue measure. Recently, the SRB measures were found to be related to the nonequilibrium stationary state distribution functions for thermostated or open systems. Inspite of the importance of these SRB measures, it is difficult to handle them analytically because they are often singular functions. In this article, for three kinds of Baker-type maps, the SRB measures are analytically constructed with the aid of a functional equation, which was proposed by de Rham in order to deal with a class of singular functions. We first briefly review the properties of singular functions including those of de Rham. Then, the Baker-type maps are described, one of which is non-conservative but time reversible, the second has a Cantor-like invariant set, and the third is a model of a simple chemical reaction R↔I↔PR \leftrightarrow I \leftrightarrow P. For the second example, the cases with and without escape are considered. For the last example, we consider the reaction processes in a closed system and in an open system under a flux boundary condition. In all cases, we show that the evolution equation of the distribution functions partially integrated over the unstable direction is very similar to de Rham's functional equation and, employing this analogy, we explicitly construct the SRB measures.Comment: 53 pages, 10 figures, to appear in CHAO

    Probability of a Solution to the Solar Neutrino Problem Within the Minimal Standard Model

    Get PDF
    Tests, independent of any solar model, can be made of whether solar neutrino experiments are consistent with the minimal Standard Model (stable, massless neutrinos). If the experimental uncertainties are correctly estimated and the sun is generating energy by light-element fusion in quasi-static equilibrium, the probability of a standard-physics solution is less than 2%. Even when the luminosity constraint is abandoned, the probability is not more than 4%. The sensitivity of the conclusions to input parameters is explored.Comment: PRL, Revtex, 1 figure, 5 page
    • 

    corecore