We construct a Batalin-Vilkovisky (BV) algebra on moduli spaces of Riemann
surfaces. This algebra is background independent in that it makes no reference
to a state space of a conformal field theory. Conformal theories define a
homomorphism of this algebra to the BV algebra of string functionals. The
construction begins with a graded-commutative free associative algebra \C
built from the vector space whose elements are orientable subspaces of moduli
spaces of punctured Riemann surfaces. The typical element here is a surface
with several connected components. The operation Δ of sewing two
punctures with a full twist is shown to be an odd, second order derivation that
squares to zero. It follows that (\C, \Delta) is a Batalin-Vilkovisky
algebra. We introduce the odd operator δ=∂+ℏΔ, where
∂ is the boundary operator. It is seen that δ2=0, and that
consistent closed string vertices define a cohomology class of δ. This
cohomology class is used to construct a Lie algebra on a quotient space of
\C. This Lie algebra gives a manifestly background independent description of
a subalgebra of the closed string gauge algebra.Comment: phyzzx.tex, MIT-CTP-234