23,586 research outputs found

    The transverse structure of the QCD string

    Full text link
    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is the appropriate probe to use when comparing with the next-to-leading order string prediction. Secondly we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent `gravitational' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length \beta, defined from the slope of its gravitational form factor, is given by (d-1)/(2\pi\sigma)\log(\beta/(4r_0)) in d space dimensions. This is to be compared with the well-known result that the width of the open-string at mid-point grows as (d-1)/(2\pi\sigma) log(r/r_0). We also obtain predictions for transition form factors among closed-string states.Comment: 21 pages, 1 figur

    Instrument accurately measures small temperature changes on test surface

    Get PDF
    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material

    Heat sensing instrument Patent

    Get PDF
    Heat sensing instrument, using thermocouple junction connected under heavy conducting materia

    Lattice Gauge Theory Sum Rule for the Shear Channel

    Full text link
    An exact expression is derived for the (ω,p)=0(\omega,p)=0 thermal correlator of shear stress in SU(NcN_c) lattice gauge theory. I remove a logarithmic divergence by taking a suitable linear combination of the shear correlator and the correlator of the energy density. The operator product expansion shows that the same linear combination has a finite limit when ω→∞\omega\to\infty. It follows that the vacuum-subtracted shear spectral function vanishes at large frequencies at least as fast as αs2(ω)\alpha_s^2(\omega) and obeys a sum rule. The trace anomaly makes a potential contribution to the spectral sum rule which remains to be fully calculated, but which I estimate to be numerically small for T≳3TcT\gtrsim 3T_c. By contrast with the bulk channel, the shear channel spectral density is then overall enhanced as compared to the spectral density in vacuo.Comment: 11 pages, no figure

    Density, short-range order and the quark-gluon plasma

    Full text link
    We study the thermal part of the energy density spatial correlator in the quark-gluon plasma. We describe its qualitative form at high temperatures. We then calculate it out to distances approx. 1.5/T in SU(3) gauge theory lattice simulations for the range of temperatures 0.9<= T/T_c<= 2.2. The vacuum-subtracted correlator exhibits non-monotonic behavior, and is almost conformal by 2T_c. Its broad maximum at r approx. 0.6/T suggests a dense medium with only weak short-range order, similar to a non-relativistic fluid near the liquid-gas phase transition, where eta/s is minimal.Comment: 4 pages, 4 figure

    Cutoff Effects on Energy-Momentum Tensor Correlators in Lattice Gauge Theory

    Full text link
    We investigate the discretization errors affecting correlators of the energy-momentum tensor TμνT_{\mu\nu} at finite temperature in SU(NcN_c) gauge theory with the Wilson action and two different discretizations of TμνT_{\mu\nu}. We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x0x_0 and spatial momentum p{\bf p}, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d3xT00\int d^3x T_{00} has much larger discretization errors than the correlator of momentum ∫d3xT0k\int d^3x T_{0k}. Secondly, the shear and diagonal stress correlators (T12T_{12} and TkkT_{kk}) require \Nt\geq 8 for the Tx0=1/2Tx_0={1/2} point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with \as/\at=2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p{\bf p} correlators.Comment: 16 pages, 5 figure

    High-Precision Thermodynamics and Hagedorn Density of States

    Full text link
    We compute the entropy density of the confined phase of QCD without quarks on the lattice to very high accuracy. The results are compared to the entropy density of free glueballs, where we include all the known glueball states below the two-particle threshold. We find that an excellent, parameter-free description of the entropy density between 0.7Tc and Tc is obtained by extending the spectrum with the exponential spectrum of the closed bosonic string.Comment: 4 pages, 3 figure

    Image restoration and superresolution as probes of small scale far-IR structure in star forming regions

    Get PDF
    Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed

    Vlasov simulation in multiple spatial dimensions

    Full text link
    A long-standing challenge encountered in modeling plasma dynamics is achieving practical Vlasov equation simulation in multiple spatial dimensions over large length and time scales. While direct multi-dimension Vlasov simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010, http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown promising results, in this paper we present an alternative, the Vlasov Multi Dimensional (VMD) model, that is specifically designed to take advantage of solution properties in regimes when plasma waves are confined to a narrow cone, as may be the case for stimulated Raman scatter in large optic f# laser beams. Perpendicular grid spacing large compared to a Debye length is then possible without instability, enabling an order 10 decrease in required computational resources compared to standard particle in cell (PIC) methods in 2D, with another reduction of that order in 3D. Further advantage compared to PIC methods accrues in regimes where particle noise is an issue. VMD and PIC results in a 2D model of localized Langmuir waves are in qualitative agreement
    • …
    corecore