242 research outputs found
Electron correlations, spontaneous magnetization and momentum density in quantum dots
The magnetization of quantum dots is discussed in terms of a relatively
simple but exactly solvable model Hamiltonian. The model predicts oscillations
in spin polarization as a function of dot radius for a fixed electron density.
These oscillations in magnetization are shown to yield distinct signature in
the momentum density of the electron gas, suggesting the usefulness of momentum
resolved spectroscopies for investigating the magnetization of dot systems. We
also present variational quantum Monte Carlo calculations on a square dot
containing 12 electrons in order to gain insight into correlation effects on
the interactions between like and unlike spins in a quantum dot.Comment: 6 pages, 4 figure
Electronic structure, magnetism and superconductivity of MgCNi
The electronic structure of the newly discovered superconducting perovskite
MgCNi is calculated using the LMTO and KKR methods. The states near the
Fermi energy are found to be dominated by Ni-d. The Stoner factor is low while
the electron-phonon coupling constant is estimated to be about 0.7, which
suggests that the material is a conventional type of superconductor where T
is not affected by magnetic interactions. However, the proximity of the Fermi
energy to a large peak in the density of states in conjunction with the
reported non-stoichiometry of the compound, has consequences for the stability
of the results.Comment: 3 pages, 4 figure
Nonadiabatic effects in a generalized Jahn-Teller lattice model: heavy and light polarons, pairing and metal-insulator transition
The ground state polaron potential of 1D lattice of two-level molecules with
spinless electrons and two Einstein phonon modes with quantum phonon-assisted
transitions between the levels is found anharmonic in phonon displacements. The
potential shows a crossover from two nonequivalent broad minima to a single
narrow minimum corresponding to the level positions in the ground state.
Generalized variational approach implies prominent nonadiabatic effects:(i) In
the limit of the symmetric E-e Jahn- Teller situation they cause transition
between the regime of the predominantly one-level "heavy" polaron and a "light"
polaron oscillating between the levels due to phonon assistance with almost
vanishing polaron displacement. It implies enhancement of the electron transfer
due to decrease of the "heavy" polaron mass (undressing) at the point of the
transition. Pairing of "light" polarons due to exchange of virtual phonons
occurs. Continuous transition to new energy ground state close to the
transition from "heavy" polaron phase to "light" (bi)polaron phase occurs. In
the "heavy" phase, there occurs anomalous (anharmonic) enhancements of quantum
fluctuations of the phonon coordinate, momentum and their product as functions
of the effective coupling. (ii) Dependence of the polaron mass on the optical
phonon frequency appears.(iii) Rabi oscillations significantly enhance quantum
shift of the insulator-metal transition line to higher values of the critical
effective e-ph coupling supporting so the metallic phase. In the E-e JT case,
insulator-metal transition coincide with the transition between the "heavy" and
the "light" (bi)polaron phase at certain (strong) effective e-ph interaction.Comment: Paper in LaTex format (file jtseptx.tex) and 9 GIF-figures
(ppic_1.gif,...ppic_9.gif
The possible explanation of electric-field-doped C60 phenomenology in the framework of Eliashberg theory
In a recent paper (J.H. Schon, Ch. Kloc, R.C. Haddon and B. Batlogg, Nature
408 (2000) 549) a large increase in the superconducting critical temperature
was observed in C60 doped with holes by application of a high electric field.
We demonstrate that the measured Tc versus doping curves can be explained by
solving the (four) s-wave Eliashberg equations in the case of a finite,
non-half-filled energy band. In order to reproduce the experimental data, we
assume a Coulomb pseudopotential depending on the filling in a very simple and
plausible way. Reasonable values of the physical parameters involved are
obtained. The application of the same approach to new experimental data (J.H.
Schon, Ch. Kloc and B. Batlogg, Science 293 (2001) 2432) on electric
field-doped, lattice-expanded C60 single crystals (Tc=117 K in the hole-doped
case) gives equally good results and sets a theoretical limit to the linear
increase of Tc at the increase of the lattice spacing.Comment: latex2e, 6 pages, 7 figures, 1 table, revised versio
Phase Diagram of Diluted Magnetic Semiconductor Quantum Wells
The phase diagram of diluted magnetic semiconductor quantum wells is
investigated. The interaction between the carriers in the hole gas can lead to
first order ferromagnetic transitions, which remain abrupt in applied fields.
These transitions can be induced by magnetic fields or, in double-layer systems
by electric fields. We make a number of precise experimental predictions for
observing these first order phase transitions.Comment: 4 pages, 3 figures include
Crystal Structures and Electronic Properties of Haloform-Intercalated C60
Using density functional methods we calculated structural and electronic
properties of bulk chloroform and bromoform intercalated C60, C60 2CHX3
(X=Cl,Br). Both compounds are narrow band insulator materials with a gap
between valence and conduction bands larger than 1 eV. The calculated widths of
the valence and conduction bands are 0.4-0.6 eV and 0.3-0.4 eV, respectively.
The orbitals of the haloform molecules overlap with the orbitals of the
fullerene molecules and the p-type orbitals of halogen atoms significantly
contribute to the valence and conduction bands of C60 2CHX3. Charging with
electrons and holes turns the systems to metals. Contrary to expectation, 10 to
20 % of the charge is on the haloform molecules and is thus not completely
localized on the fullerene molecules. Calculations on different crystal
structures of C60 2CHCl3 and C60 2CHBr3 revealed that the density of states at
the Fermi energy are sensitive to the orientation of the haloform and C60
molecules. At a charging of three holes, which corresponds to the
superconducting phase of pure C60 and C60 2CHX3, the calculated density of
states (DOS) at the Fermi energy increases in the sequence DOS(C60) < DOS(C60
2CHCl3) < DOS(C60 2CHBr3).Comment: 11 pages, 7 figures, 4 table
Energy gap in superconducting fullerides: optical and tunneling studies
Tunneling and optical transmission studies have been performed on
superconducting samples of Rb3C60. At temperatures much below the
superconducting transition temperature Tc the energy gap is 2 Delta=5.2 +-
0.2meV, corresponding to 2 Delta/kB Tc = 4.2. The low temperature density of
states, and the temperature dependence of the optical conductivity resembles
the BCS behavior, although there is an enhanced ``normal state" contribution.
The results indicate that this fulleride material is an s-wave superconductor,
but the superconductivity cannot be described in the weak coupling limit.Comment: RevTex file with four .EPS figures. Prints to four pages. Also
available at http://buckminster.physics.sunysb.edu/papers/pubrece.htm
Study of a Nonlocal Density scheme for electronic--structure calculations
An exchange-correlation energy functional beyond the local density
approximation, based on the exchange-correlation kernel of the homogeneous
electron gas and originally introduced by Kohn and Sham, is considered for
electronic structure calculations of semiconductors and atoms. Calculations are
carried out for diamond, silicon, silicon carbide and gallium arsenide. The
lattice constants and gaps show a small improvement with respect to the LDA
results.
However, the corresponding corrections to the total energy of the isolated
atoms are not large enough to yield a substantial improvement for the cohesive
energy of solids, which remains hence overestimated as in the LDA.Comment: 4 postscript figure
Formulae for zero-temperature conductance through a region with interaction
The zero-temperature linear response conductance through an interacting
mesoscopic region attached to noninteracting leads is investigated. We present
a set of formulae expressing the conductance in terms of the ground-state
energy or persistent currents in an auxiliary system, namely a ring threaded by
a magnetic flux and containing the correlated electron region. We first derive
the conductance formulae for the noninteracting case and then give arguments
why the formalism is also correct in the interacting case if the ground state
of a system exhibits Fermi liquid properties. We prove that in such systems,
the ground-state energy is a universal function of the magnetic flux, where the
conductance is the only parameter. The method is tested by comparing its
predictions with exact results and results of other methods for problems such
as the transport through single and double quantum dots containing interacting
electrons. The comparisons show an excellent quantitative agreement.Comment: 18 pages, 18 figures; to appear in Phys. Rev.
Use of the Generalized Gradient Approximation in Pseudopotential Calculations of Solids
We present a study of the equilibrium properties of -bonded solids within
the pseudopotential approach, employing recently proposed generalized gradient
approximation (GGA) exchange correlation functionals. We analyze the effects of
the gradient corrections on the behavior of the pseudopotentials and discuss
possible approaches for constructing pseudopotentials self-consistently in the
context of gradient corrected functionals. The calculated equilibrium
properties of solids using the GGA functionals are compared to the ones
obtained through the local density approximation (LDA) and to experimental
data. A significant improvement over the LDA results is achieved with the use
of the GGA functionals for cohesive energies. For the lattice constant, the
same accuracy as in LDA can be obtained when the nonlinear coupling between
core and valence electrons introduced by the exchange correlation functionals
is properly taken into account. However, GGA functionals give bulk moduli that
are too small compared to experiment.Comment: 15 pages, latex, no figure
- …
